首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently shown that the matrix protein M of Borna disease virus (BDV) copurifies with the affinity-purified nucleoprotein (N) from BDV-infected cells, suggesting that M is an integral component of the viral ribonucleoprotein complex (RNP). However, further studies were hampered by the lack of appropriate tools. Here we generated an M-specific rabbit polyclonal antiserum to investigate the intracellular distribution of M as well as its colocalization with other viral proteins in BDV-infected cells. Immunofluorescence analysis revealed that M is located both in the cytoplasm and in nuclear punctate structures typical for BDV infection. Colocalization studies indicated an association of M with nucleocapsid proteins in these nuclear punctate structures. In situ hybridization analysis revealed that M also colocalizes with the viral genome, implying that M associates directly with viral RNPs. Biochemical studies demonstrated that M binds specifically to the phosphoprotein P but not to N. Binding of M to P involves the N terminus of P and is independent of the ability of P to oligomerize. Surprisingly, despite P-M complex formation, BDV polymerase activity was not inhibited but rather slightly elevated by M, as revealed in a minireplicon assay. Thus, unlike M proteins of other negative-strand RNA viruses, BDV-M seems to be an integral component of the RNPs without interfering with the viral polymerase activity. We propose that this unique feature of BDV-M is a prerequisite for the establishment of BDV persistence.  相似文献   

2.
Borna disease virus (BoDV), a prototype of mammalian bornavirus, is a non‐segmented, negative strand RNA virus that often causes severe neurological disorders in infected animals, including horses and sheep. Unique among animal RNA viruses, BoDV transcribes and replicates non‐cytopathically in the cell nucleus, leading to establishment of long‐lasting persistent infection. This striking feature of BoDV indicates its potential as an RNA virus vector system. It has previously been demonstrated by our team that recombinant BoDV (rBoDV) lacking an envelope glycoprotein (G ) gene develops persistent infections in transduced cells without loss of the viral genome. In this study, a novel non‐transmissive rBoDV, rBoDV ΔMG, which lacks both matrix (M ) and G genes in the genome, is reported. rBoDV‐ΔMG expressing green fluorescence protein (GFP), rBoDV ΔMG‐GFP, was efficiently generated in Vero/MG cells stably expressing both BoDV M and G proteins. Infection with rBoDV ΔMG‐GFP was persistently maintained in the parent Vero cells without propagation within cell culture. The optimal ratio of M and G for efficient viral particle production by transient transfection of M and G expression plasmids into cells persistently infected with rBoDV ΔMG‐GFP was also demonstrated. These findings indicate that the rBoDV ΔMG‐based BoDV vector may provide an extremely safe virus vector system and could be a novel strategy for investigating the function of M and G proteins and the host range of bornaviruses.
  相似文献   

3.
The M2 protein from influenza A virus is a 97-amino-acid protein with a single transmembrane helix that forms proton-selective channels essential to virus function. The hydrophobic transmembrane domain of the M2 protein (M2TM) contains a sequence motif that mediates the formation of functional tetramers in membrane environments. A variety of structural models have previously been proposed which differ in the degree of helix tilt, with proposed tilts ranging from approximately 15 degrees to 38 degrees . An important issue for understanding the structure of M2TM is the role of peptide-lipid interactions in the stabilization of the lipid bilayer bound tetramer. Here, we labeled the N terminus of M2TM with a nitroxide and studied the tetramer reconstituted into lipid bilayers of different thicknesses using EPR spectroscopy. Analyses of spectral changes provide evidence that the lipid bilayer does influence the conformation. The structural plasticity displayed by M2TM in response to membrane composition may be indicative of functional requirements for conformational change. The various structural models for M2TM proposed to date--each defined by a different set of criteria and in a different environment--might provide snapshots of the distinct conformational states sampled by the protein.  相似文献   

4.
Soluble, recombinant forms of influenza A virus haemagglutinin and neuraminidase have been produced in cells of lower eukaryotes, and shown in a mouse model to induce complete protective immunity against a lethal virus challenge. Soluble neuraminidase, produced in a baculovirus system, consisted of tetramers, dimers and monomers. Only the tetramers were enzymatically active. The immunogenicity decreased very considerably in the order tetra > di > mono. Therefore, we fused the head part of the neuraminidase gene to a tetramerizing leucine zipper sequence; the resulting product was enzymatically active, tetrameric neuraminidase. The protective immunity induced by this engineered neuraminidase, however, remained fairly strain-specific. A third influenza A virus protein, the M2 protein, has only 23 amino acids exposed on the outer membrane surface. This extracellular part, M2e, has been remarkably conserved in all human influenza A strains since 1933. By fusing the M2e sequence to hepatitis B virus core protein, we could obtain highly immunogenic particles that induced complete, strain-independent, long-lasting protection in mice against a lethal viral challenge. Native M2 is a tetrameric protein and this conformation of the M2e part can also be mimicked by fusing this sequence to a tetramerizing leucine zipper. The potential of the resulting protein as a vaccine candidate remains to be evaluated.  相似文献   

5.
When influenza A virus infects host cells, its integral matrix protein M2 forms a proton-selective channel in the viral envelope. Although X-ray crystallography and NMR studies using fragment peptides have suggested that M2 stably forms a tetrameric channel irrespective of pH, the oligomeric states of the full-length protein in the living cells have not yet been assessed directly. In the present study, we utilized recently developed stoichiometric analytical methods based on fluorescence resonance energy transfer using coiled-coil labeling technique and spectral imaging, and we examined the relationship between the oligomeric states of full-length M2 and its channel activities in living cells. In contrast to previous models, M2 formed proton-conducting dimers at neutral pH and these dimers were converted to tetramers at acidic pH. The antiviral drug amantadine hydrochloride inhibited both tetramerization and channel activity. The removal of cholesterol resulted in a significant decrease in the activity of the dimer. These results indicate that the minimum functional unit of the M2 protein is a dimer, which forms a complex with cholesterol for its function.  相似文献   

6.
目的利用重组博尔纳病病毒核蛋白进行动物免疫,制备多克隆抗体并对其进行鉴定。方法将重组载体pET14b-p40转化至感受态大肠埃希菌I,PTG诱导融合蛋白的表达,His-tag亲和层析纯化重组核蛋白并作为抗原免疫新西兰大白兔,收集免疫后血清,制备和纯化多克隆抗体,ELISA测定抗体效价,并进行Western-blot鉴定。结果成功制备出核蛋白多克隆抗体,ELISA检测效价高达1︰256000;该抗体与原核和真核系统中表达的核蛋白均能发生特异性反应。结论成功制备了效价和特异性良好的抗重组核蛋白多克隆抗体,为博尔纳病病毒血清免疫学检测方法的建立奠定了基础。  相似文献   

7.
The ectodomain of the matrix 2 protein (M2e) of influenza A virus represents an attractive target for developing a universal influenza A vaccine, with its sequence being highly conserved amongst human variants of this virus. With the aim of targeting conformational epitopes presumably shared by diverse influenza A viruses, a vaccine (M2e-NSP4) was constructed linking M2e (in its consensus sequence) to the rotavirus fragment NSP498–135; due to its coiled-coil region this fragment is known to form tetramers in aqueous solution and in this manner we hoped to mimick the natural configuration of M2e as presented in membranes. M2e-NSP4 was then evaluated side-by-side with synthetic M2e peptide for its immunogenicity and protective efficacy in a murine influenza challenge model. Here we demonstrate that M2e fused to the tetramerizing protein induces an accelerated, augmented and more broadly reactive antibody response than does M2e peptide as measured in two different assays. Most importantly, vaccination with M2e-NSP4 caused a significant decrease in lung virus load early after challenge with influenza A virus and maintained its efficacy against a lethal challenge even at very low vaccine doses. Based on the results presented in this study M2e-NSP4 merits further investigation as a candidate for or as a component of a universal influenza A vaccine.  相似文献   

8.
Although progress has been made in understanding the thermodynamic stability of water-soluble proteins, our understanding of the folding of membrane proteins is at a relatively primitive level. A major obstacle to understanding the folding of membrane proteins is the discovery of systems in which the folding is in thermodynamic equilibrium, and the development of methods to quantitatively assess this equilibrium in micelles and bilayers. Here, we describe the application of disulfide cross-linking to quantitatively measure the thermodynamics of membrane protein association in detergent micelles. The method involves initiating disulfide cross-linking of a protein under reversible redox conditions in a thiol-disulfide buffer and quantitative assessment of the extent of cross-linking at equilibrium. The 19-46 alpha-helical transmembrane segment of the M2 protein from the influenza A virus was used as a model membrane protein system for this study. Previously it has been shown that transmembrane peptides from this protein specifically self-assemble into tetramers that retain the ability to bind to the drug amantadine. We used thiol-disulfide exchange to quantitatively measure the tetramerization equilibrium of this transmembrane protein in dodecylphosphocholine (DPC) detergent micelles. The association constants obtained agree remarkably well with those derived from analytical ultracentrifugation studies. The experimental method established herein should provide a broadly applicable tool for thermodynamic studies of folding, oligomerization and protein-protein interactions of membrane proteins.  相似文献   

9.
Influenza virus matrix protein 1 (M1) has been shown to play a crucial role in the virus replication, assembly and budding. We identified heat shock cognate protein 70 (Hsc70) as a M1 binding protein by immunoprecipitation and MALDI-TOF MS. The C terminal domain of M1 interacts with Hsc70. We found that Hsc70 does not correlate with the transport of M1 to the nucleus, however, it does inhibit the nuclear export of M1 and NP, thus resulting in the inhibition of viral production. This is the first demonstration that Hsc70 is directly associated with M1 and therefore is required for viral production.  相似文献   

10.
目的构建两种博尔纳病病毒株持续感染的PC-12细胞模型,为研究博尔纳病病毒感染致病机制及比较两种病毒株致病特点的差别提供工具。方法将BDV Strain V株和Hu株分别感染PC-12细胞系,并进行传代培养,最后通过Real time FQ RT-PCR、Western blot、间接免疫荧光方法进行病毒核酸和蛋白的检测。结果在培养传代6代后,两种病毒株感染的PC-12细胞均可检测到BDV核酸及蛋白。结论 BDV Strain V株和Hu株均可在PC-12细胞中复制和表达,两种博尔纳病病毒株持续感染PC-12细胞模型构建成功。  相似文献   

11.
The influenza M2 protein forms a drug-targeted tetrameric proton channel to mediate virus uncoating, and carries out membrane scission to enable virus release. While the proton channel function of M2 has been extensively studied, the mechanism by which M2 catalyzes membrane scission is still not well understood. Previous fluorescence and electron microscopy studies indicated that M2 tetramers concentrate at the neck of the budding virus in the host plasma membrane. However, molecular evidence for this clustering is scarce. Here, we use 19F solid-state NMR to investigate M2 clustering in phospholipid bilayers. By mixing equimolar amounts of 4F-Phe47 labeled M2 peptide and CF3-Phe47 labeled M2 peptide and measuring F-CF3 cross peaks in 2D 19F19F correlation spectra, we show that M2 tetramers form nanometer-scale clusters in lipid bilayers. This clustering is stronger in cholesterol-containing membranes and phosphatidylethanolamine (PE) membranes than in cholesterol-free phosphatidylcholine and phosphatidylglycerol membranes. The observed correlation peaks indicate that Phe47 sidechains from different tetramers are less than ~2 nm apart. 1H19F correlation peaks between lipid chain protons and fluorinated Phe47 indicate that Phe47 is more deeply inserted into the lipid bilayer in the presence of cholesterol than in its absence, suggesting that Phe47 preferentially interacts with cholesterol. Static 31P NMR spectra indicate that M2 induces negative Gaussian curvature in the PE membrane. These results suggest that M2 tetramers cluster at cholesterol- and PE-rich regions of cell membranes to cause membrane curvature, which in turn can facilitate membrane scission in the last step of virus budding and release.  相似文献   

12.
目的 评价博尔纳病病毒(Borna disease virus,BDV)实时荧光定量PCR(FQ RT-PCR)试剂盒的各项指标,并了解其实际应用效果.方法 使用BDV OL持续感染细胞株、非BDV病毒序列转染的OL细胞、正常的OL细胞,对BDV RT-PCR试剂盒的敏感性、特异性、重复性和稳定性进行评估,同时检测部分临床病人和动物外周血液RNA.结果 试剂盒可以检测出的病毒RNA最低浓度为10~2,相当于1.5个病毒拷贝数.特异性好,无非特异检出.不同批次的试剂盒的检测结果变异系数接近1.加速破坏的试剂盒和正常试剂盒检测结果之间变异系数在2以内.对临床病人检测阳性率为3.6%,对动物检测阳性率为4.4%.结论 试剂盒敏感性、特异性、重复性和稳定性均佳,是BDV基础研究、流行病学调查、临床检测的良好工具.  相似文献   

13.
The influenza virus matrix protein 2 (M2) assembles into a tetramer in the host membrane during viral uncoating and maturation. It has been used as a model system to understand the relative contributions of protein-lipid and protein-protein interactions to membrane protein structure and association. Here we investigate the effect of lipid chain length on the association of the M2 transmembrane domain into tetramers using Förster resonance energy transfer. We observe that the interactions between the M2 helices are much stronger in 1,2-dilauroyl-sn-glycero-3-phosphocholine than in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers. Thus, lipid chain length and bilayer thickness not only modulate peptide interactions, but could also be a major determinant of the association of transmembrane helices into functional membrane protein oligomers.  相似文献   

14.
【目的】建立博尔纳病病毒磷蛋白在神经源性PC-12细胞内的稳定表达体系,初步探讨博尔纳病病毒磷蛋白对PC-12细胞的生长是否有影响。【方法】培养PC-12细胞,用阳离子脂质体的方法将带有博尔纳病病毒磷蛋白基因的表达质粒转染到细胞内进行稳定表达,用荧光显微镜和RT-PCR的方法检测细胞内磷蛋白的表达,用MTT方法检测磷蛋白对细胞生长的影响。【结果】 转染细胞经培养10代后仍然表达目的蛋白,成功建立稳定表达体系。MTT检测显示博尔纳病病毒磷蛋白对PC-12细胞的生长具有明显的抑制作用,其生长明显滞后,但粘附能力增加。【结论】 通过本文建立的体系能在PC-12细胞内稳定表达博尔纳病病毒磷蛋白,该体系可用于进一步深入研究博尔纳病病毒磷蛋白的作用机制,进而为研究博尔纳病病毒持续感染中枢神经系统的机制提供基础。此外本文通过检测细胞的增殖活性发现博尔纳病病毒磷蛋白对PC-12细胞的生长具有明显的抑制作用,可能是博尔纳病病毒持续感染中枢神经系统的重要机制之一。  相似文献   

15.
The open reading frame III of Borna disease virus (BDV) codes for a protein with a mass of 16 kDa, named p16 or BDV-M. p16 was described as an N-glycosylated protein in several previous publications and therefore was termed gp18, although the amino acid sequence of p16 does not contain any regular consensus sequence for N glycosylation. We examined glycosylation of p16 and studied its membrane topology using antisera raised against peptides, which comprise the N and the C termini. Neither an N- nor a C-terminal peptide is cleaved from p16 during maturation. Neither deglycosylation of p16 by endoglycosidases nor binding of lectin to p16 was detectable. Introduction of typical N-glycosylation sites at the proposed sites of p16 failed in carbohydrate attachment. Flotation experiments with membranes of BDV-infected cells on density gradients revealed that p16 is not an integral membrane protein, since it can be dissociated from membranes. Our experimental data strongly suggest that p16 is a typical nonglycosylated matrix protein associated at the inner surface of the viral membrane, as is true for homologous proteins of other members of the Mononegavirales order.  相似文献   

16.
Transthyretin (TTR) is a 127-residue homotetrameric beta-sheet-rich protein that transports thyroxine in the blood and cerebrospinal fluid. The deposition of fibrils and amorphous aggregates of TTR in patients' tissues is a hallmark of TTR amyloid disease. Familial amyloidotic polyneuropathy is a hereditary form of TTR amyloidosis that is associated with one among 80 different variants of TTR. The most aggressive variants of TTR are V30M, L55P, and A25T, and the propensity to undergo aggregation seems to be linked to tetramer stability. T119M is a very stable, non-amyloidogenic variant of TTR. Here we show that the combination of high hydrostatic pressure with subdenaturing concentrations of urea (4 m) at 1 degrees C irreversibly dissociates T119M into monomers in less than 30 min in a concentration-dependent fashion. After pressure and urea removal, long lived monomers are the only species present in solution. We took advantage of the slow reassociation kinetics of these monomers into tetramers to produce heterotetramers by mixing the T119M monomers with the tetramers of the aggressive mutants of TTR. Our data show that T119M monomers can be successfully incorporated into all of these tetramers even when the exchange is performed in a more physiological environment such as human plasma; these monomers render the resultant heterotetramers less amyloidogenic. The data presented here are relevant for the understanding of T119M folding and association reactions and provide a protocol for producing T119M monomers that function as inhibitors of TTR aggregation when incorporated in to tetramers. This protocol may provide a new strategy for treating TTR diseases for which there is no therapy available other than liver transplantation.  相似文献   

17.
The biochemical properties of a second protein (CM2) encoded by RNA segment 6 of influenza C virus were investigated. Three forms of CM2 with different electrophoretic mobilities (CM2(0), CM2a, and CM2b) were detected in infected cells by immunoprecipitation with antiserum to the glutathione S-transferase (GST)-CM2 fusion protein. Treatment of infected cells with tunicamycin and digestion of immunoprecipitated proteins with endoglycosidase H or peptide-N-glycosidase F suggested that a mannose-rich oligosaccharide core is added to unglycosylated CM2(0) (Mr, approximately 16,000) to form CM2a (Mr, approximately 18,000) and that the processing of the carbohydrate chain from the high-mannose type to the complex type converts CM2a into CM2b, which is heterogeneous in electrophoretic mobility (Mr, approximately 22,000 to 30,000). Labeling of infected cells with [3H]palmitic acid showed that CM2 is fatty acylated. The fatty acid bond was sensitive to treatment with hydroxylamine and mercaptoethanol, which indicates a labile thioester-type linkage. The CM2 protein was also found to form disulfide-linked dimers and tetramers on sodium dodecyl sulfate-polyacrylamide gels under nonreducing conditions. Trypsin treatment of infected cell surfaces as well as of microsome vesicles from infected cells followed by immunoprecipitation with antiserum to the GST fusion protein containing the 56 C-terminal amino acid residues of CM2 suggested that this C-terminal domain is intracellular and exposed to the cytoplasms of microsomes. Furthermore, evidence that a small amount of CM2 is incorporated into progeny virus particles was obtained by Western blot analysis. These results, altogether, suggest that CM2 is an integral membrane protein with biochemical properties similar to those of influenza A virus M2 and influenza B virus NB proteins.  相似文献   

18.
All orthobunyaviruses possess three genome segments of single-stranded negative sense RNA that are encapsidated with the virus-encoded nucleocapsid (N) protein to form a ribonucleoprotein (RNP) complex, which is uncharacterized at high resolution. We report the crystal structure of both the Bunyamwera virus (BUNV) N–RNA complex and the unbound Schmallenberg virus (SBV) N protein, at resolutions of 3.20 and 2.75 Å, respectively. Both N proteins crystallized as ring-like tetramers and exhibit a high degree of structural similarity despite classification into different orthobunyavirus serogroups. The structures represent a new RNA-binding protein fold. BUNV N possesses a positively charged groove into which RNA is deeply sequestered, with the bases facing away from the solvent. This location is highly inaccessible, implying that RNA polymerization and other critical base pairing events in the virus life cycle require RNP disassembly. Mutational analysis of N protein supports a correlation between structure and function. Comparison between these crystal structures and electron microscopy images of both soluble tetramers and authentic RNPs suggests the N protein does not bind RNA as a repeating monomer; thus, it represents a newly described architecture for bunyavirus RNP assembly, with implications for many other segmented negative-strand RNA viruses.  相似文献   

19.
Cytotoxic T lymphocyte (CTL) epitopes in the HBV protein of hepatitis B virus (HBV) may play a key role in viral control and liver damage. The aim of this study was to identify and study the function of HLA-A33:03-restricted CTL epitopes in HBV protein of the HBV genotypes B and C, which are epidemic in China. Sixteen HBV peptides were predicated by computational analysis, and synthesized peptides were examined for their affinity to HLA-A33:03 using a stable cell line. After being analyzed by enzyme-linked immunospot and cytolytic activity assays, as well as the tetramers staining method using peripheral blood mononuclear cells isolated from HBV-infected patients, five peptides (Hbs245–253, HBs335–343, HBc119–127, HBc104–112, and HBp391–399) were chosen to further confirm their HLA_A33:03 restriction in transgenic mice.  相似文献   

20.
目的建立博尔纳病病毒(Borna disease virus,BDV)磷蛋白的细胞模型,并对所建模型进行鉴定。方法重新扩增和鉴定已有的BDV磷蛋白(GFP-P24)质粒,使用转染试剂将该质粒转入PC12细胞,并用荧光定量PCR和ELISA的方法对所构建的细胞模型进行鉴定。结果重新扩增的质粒PCR鉴定阳性,其浓度符合转染的需要,测序后未发现核苷酸的突变;转染PC12细胞的效率高,荧光定量PCR和ELISA检测均为阳性。结论成功构建了BDV磷蛋白的细胞模型,为研究BDV感染过程中磷蛋白所起的作用奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号