首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Model single base extension (SBE) genotyping reactions with individual deoxy-, dideoxy- and acyclonucleoside triphosphates are monitored by MALDI-TOF mass spectrometry. Three non-proofreading DNA polymerases display remarkably high misincorporation (up to 64% of correct incorporation) when extending primers with single substrates at saturating concentrations. Introduction of one phosphorothioate (PS) linkage into the primer 3′ terminus reduces misincorporation by these enzymes an average 1.4-fold (range 0- to 3.5-fold) versus correct incorporation. Combined use of 3′-PS primers with strongly proofreading DNA polymerases yields order of magnitude improvements in SBE fidelity over those produced by the equivalent non-proofreading enzymes. Errors are reduced to below MALDI-TOF detectable levels in almost all cases. The Sp diastereomer of the 3′-PS primer, which can be prepared in situ by incubation with proofreading polymerase, is stable to 3′-exonuclease activity over periods longer than 16 h. Products of correct extension by T7 DNAP are retained over 30–60 min during idling turnover at a dNTP concentration of 2.5 µM, indicating that the assay can be applied over a broad range of substrate concentrations. These results suggest that the use of PS primers and proofreading polymerases will offer a simple and cost-effective means to improve fidelity in a range of single-substrate SBE assay formats.  相似文献   

2.
Faithful replication of genomic DNA by high-fidelity DNA polymerases is crucial for the survival of most living organisms. While high-fidelity DNA polymerases favor canonical base pairs over mismatches by a factor of ∼1 × 105, fidelity is further enhanced several orders of magnitude by a 3′–5′ proofreading exonuclease that selectively removes mispaired bases in the primer strand. Despite the importance of proofreading to maintaining genome stability, it remains much less studied than the fidelity mechanisms employed at the polymerase active site. Here we characterize the substrate specificity for the proofreading exonuclease of a high-fidelity DNA polymerase by investigating the proofreading kinetics on various DNA substrates. The contribution of the exonuclease to net fidelity is a function of the kinetic partitioning between extension and excision. We show that while proofreading of a terminal mismatch is efficient, proofreading a mismatch buried by one or two correct bases is even more efficient. Because the polymerase stalls after incorporation of a mismatch and after incorporation of one or two correct bases on top of a mismatch, the net contribution of the exonuclease is a function of multiple opportunities to correct mistakes. We also characterize the exonuclease stereospecificity using phosphorothioate-modified DNA, provide a homology model for the DNA primer strand in the exonuclease active site, and propose a dynamic structural model for the transfer of DNA from the polymerase to the exonuclease active site based on MD simulations.  相似文献   

3.
It has been well known for decades that deoxyribonucleic acid (DNA) polymerases with proofreading function have a higher fidelity in primer extension as compared to those without 3′ exonuclease activities. However, polymerases with proofreading function have not been used in single nucleotide polymorphism (SNP) assays. Here, we describe a new method for single-base discrimination by proofreading the 3′ phosphorothioate-modified primers using a polymerase with proofreading function. Our data show that the combination of a polymerase with 3′ exonuclease activity and the 3′ phosphorothioate-modified primers work efficiently as a single-base mismatch-operated on/off switch. DNA polymerization only occurred from matched primers, whereas mismatched primers were not extended at the broad range of annealing temperature tested in our study. This novel single-base discrimination method has potential in SNP assays.  相似文献   

4.
It has been well known for decades that deoxyribonucleic acid (DNA) polymerases with proofreading function have a higher fidelity in primer extension as compared to those without 3' exonuclease activities. However, polymerases with proofreading function have not been used in single nucleotide polymorphism (SNP) assays. Here, we describe a new method for single-base discrimination by proofreading the 3' phosphorothioate-modified primers using a polymerase with proofreading function. Our data show that the combination of a polymerase with 3' exonuclease activity and the 3' phosphorothioate-modified primers work efficiently as a single-base mismatch-operated on/off switch. DNA polymerization only occurred from matched primers, whereas mismatched primers were not extended at the broad range of annealing temperature tested in our study. This novel single-base discrimination method has potential in SNP assays.  相似文献   

5.
A simple method, primer specific and mispair extension analysis (PSMEA) with pfu DNA polymerase was developed for genotyping. PSMEA is based on the unique properties of 3'-->5' exonuclease proofreading activity. In the presence of an incomplete set of dNTPs, pfu was found to be extremely discriminative in nucleotide incorporation and proofreading at the initiation step of DNA synthesis, completely preventing primer extension when mispair(s) are found adjacent to the 3'-end of the primer. This has allowed us to accurately detect nucleotide variations, deletions and insertions for fast genotyping.  相似文献   

6.
Archaeal family B polymerases bind tightly to the deaminated bases uracil and hypoxanthine in single-stranded DNA, stalling replication on encountering these pro-mutagenic deoxynucleosides four steps ahead of the primer–template junction. When uracil is specifically bound, the polymerase–DNA complex exists in the editing rather than the polymerization conformation, despite the duplex region of the primer-template being perfectly base-paired. In this article, the interplay between the 3′–5′ proofreading exonuclease activity and binding of uracil/hypoxanthine is addressed, using the family-B DNA polymerase from Pyrococcus furiosus. When uracil/hypoxanthine is bound four bases ahead of the primer–template junction (+4 position), both the polymerase and the exonuclease are inhibited, profoundly for the polymerase activity. However, if the polymerase approaches closer to the deaminated bases, locating it at +3, +2, +1 or even 0 (paired with the extreme 3′ base in the primer), the exonuclease activity is strongly stimulated. In these situations, the exonuclease activity is actually stronger than that seen with mismatched primer-templates, even though the deaminated base-containing primer-templates are correctly base-paired. The resulting exonucleolytic degradation of the primer serves to move the uracil/hypoxanthine away from the primer–template junction, restoring the stalling position to +4. Thus the 3′–5′ proofreading exonuclease contributes to the inability of the polymerase to replicate beyond deaminated bases.  相似文献   

7.
Proofreading polymerases have 3′ to 5′ exonuclease activity that allows the excision and correction of mis-incorporated bases during DNA replication. In a previous study, we demonstrated that in addition to correcting substitution errors and lowering the error rate of DNA amplification, proofreading polymerases can also edit PCR primers to match template sequences. Primer editing is a feature that can be advantageous in certain experimental contexts, such as amplicon-based microbiome profiling. Here we develop a set of synthetic DNA standards to report on primer editing activity and use these standards to dissect this phenomenon. The primer editing standards allow next-generation sequencing-based enzymological measurements, reveal the extent of editing, and allow the comparison of different polymerases and cycling conditions. We demonstrate that proofreading polymerases edit PCR primers in a concentration-dependent manner, and we examine whether primer editing exhibits any sequence specificity. In addition, we use these standards to show that primer editing is tunable through the incorporation of phosphorothioate linkages. Finally, we demonstrate the ability of primer editing to robustly rescue the drop-out of taxa with 16S rRNA gene-targeting primer mismatches using mock communities and human skin microbiome samples.  相似文献   

8.
We synthesized C5-modified analogs of 2′-deoxyuridine triphosphate and 2′-deoxycytidine triphosphate and investigated them as substrates for PCRs using Taq, Tth, Vent(exo-), KOD Dash and KOD(exo-) polymerases and pUC 18 plasmid DNA as a template. These assays were performed on two different amplifying regions of pUC18 with different T/C contents that are expected to have relatively high barriers for incorporation of either modified dU or dC. On the basis of 260 different assays (26 modified triphosphates × 5 DNA polymerases × 2 amplifying regions), it appears that generation of the full-length PCR product depends not only on the chemical structures of the substitution and the nature of the polymerase but also on whether the substitution is on dU or dC. Furthermore, the template sequence greatly affected generation of the PCR product, depending on the combination of the DNA polymerase and modified triphosphate. By examining primer extension reactions using primers and templates containing C5-modified dUs, we found that a modified dU at the 3′ end of the elongation strand greatly affects the catalytic efficiency of DNA polymerases, whereas a modified dU opposite the elongation site on the template strand has less of an influence on the catalytic efficiency.  相似文献   

9.
The role of 3' exonuclease excision in DNA polymerization was evaluated for primer extension using inert allele specific primers with exonuclease-digestible ddNMP at their 3' termini. Efficient primer extension was observed in amplicons where the inert allele specific primers and their corresponding templates were mismatched. However, no primer-extended products were yielded by matched amplicons with inert primers. As a control, polymerase without proofreading activity failed to yield primer-extended products from inert primers regardless of whether the primers and templates were matched or mismatched. These data indicated that activation was undertaken for the inert allele specific primers through mismatch proofreading. Complementary to our previously developed SNP-operated on/off switch, in which DNA polymerization only occurs in matched amplicon, this new mutation detection assay mediated by exo(+) DNA polymerases has immediate applications in SNP analysis independently or in combination of the two assays.  相似文献   

10.
Phage Φ29 encodes a DNA-dependent DNA polymerase belonging to the eukaryotic-type (family B) subgroup of DNA polymerases that use a protein as the primer for initiation of DNA synthesis. In one of the most important motifs present in the 3′→5′ exonucleolytic domain of proofreading DNA polymerases, the ExoII motif, Φ29 DNA polymerase contains three amino acid residues, Y59, H61 and F69, which are highly conserved among most proofreading DNA polymerases. These residues have recently been shown to be involved in proper stabilization of the primer terminus at the 3′→5′ exonuclease active site. Here we investigate by means of site-directed mutagenesis the role of these three residues in reactions that are specific for DNA polymerases utilizing a protein-primed DNA replication mechanism. Mutations introduced at residues Y59, H61 and F69 severely affected the protein-primed replication capacity of Φ29 DNA polymerase. For four of the mutants, namely Y59L, H61L, H61R and F69S, interaction with the terminal protein was affected, leading to few initiation and transition products. These findings, together with the specific conservation of Y59, H61 and F69 among DNA polymerases belonging to the protein-primed subgroup, strongly suggest a functional role of these amino acid residues in the DNA polymerase–terminal protein interaction.  相似文献   

11.
A new MALDI-TOF based detection assay was developed for analysis of single nucleotide polymorphisms (SNPs). It is a significant modification on the classic three-step minisequencing method, which includes a polymerase chain reaction (PCR), removal of excess nucleotides and primers, followed by primer extension in the presence of dideoxynucleotides using modified thermostable DNA polymerase. The key feature of this novel assay is reliance upon deoxynucleotide mixes, lacking one of the nucleotides at the polymorphic position. During primer extension in the presence of depleted nucleotide mixes, standard thermostable DNA polymerases dissociate from the template at positions requiring a depleted nucleotide; this principal was harnessed to create a genotyping assay. The assay design requires a primer- extension primer having its 3'-end one nucleotide upstream from the interrogated site. The assay further utilizes the same DNA polymerase in both PCR and the primer extension step. This not only simplifies the assay but also greatly reduces the cost per genotype compared to minisequencing methodology. We demonstrate accurate genotyping using this methodology for two SNPs run in both singleplex and duplex reactions. We term this assay nucleotide depletion genotyping (NUDGE). Nucleotide depletion genotyping could be extended to other genotyping assays based on primer extension such as detection by gel or capillary electrophoresis.  相似文献   

12.
Thermotoga neapolitana (Tne) DNA polymerase belongs to the DNA polymerase I (Pol I) family. The O-helix region of these polymerases is involved in dNTP binding and also plays a role in binding primer–template during DNA synthesis. Here we report that mutations in the O-helix region of Tne DNA polymerase (Arg722 to His, Tyr or Lys) almost completely abolished the enzyme’s ability to catalyze the template-independent addition of a single base at the 3′-end of newly synthesized DNA in vitro. The mutations did not significantly affect the DNA polymerase catalytic activity and reduced base misinsertions 5- to 50-fold. The same Arg722 mutations dramatically increased the ability of the enzyme’s 3′→5′ exonuclease to remove mispaired 3′ bases in a primer extension assay. These mutant DNA polymerases can be used to accurately amplify target DNA in vitro for gene cloning and genotyping analysis.  相似文献   

13.
The DNA polymerase-primase from Drosophila melanogaster contains a cryptic 3'----5' exonuclease that can be detected after separation of the 182-kDa polymerase subunit from the four-subunit enzyme. To determine the specificity of excision of mispaired nucleotides by the exonuclease, we have utilized primed phi X174am3 single-stranded DNA containing a noncomplementary nucleotide at the 3'-primer terminus, opposite deoxyadenosine at position 587 in the amber3 codon of the template strand. In the absence of polymerization, the preference for excision of the mispaired nucleotide from the primer is C greater than A much greater than G. Excision under these conditions is inhibited by the addition of deoxyguanosine monophosphate. Under conditions of concomitant DNA synthesis, the preference for excision at this site becomes A = G much greater than C, and excision is insensitive to deoxyguanosine monophosphate. The high fidelity of DNA synthesis exhibited by the isolated 182-kDa polymerase subunit is not reduced by concentrations of deoxyguanosine monophosphate or adenosine monophosphate that inhibit proofreading by prokaryotic DNA polymerases. Thus, the 3'----5' exonuclease of the Drosophila DNA polymerase-primase participates in exonucleolytic proofreading by excising noncomplementary nucleotides prior to extension of the primer by polymerase action. The deoxynucleoside triphosphate analogs N2-(p-butylphenyl)deoxyguanosine triphosphate and N2-(p-butylphenyl)deoxyadenosine triphosphate are potent inhibitors of DNA polymerase alpha. Like calf thymus DNA polymerase delta, recently determined to have proofreading capability, DNA synthesis by the isolated Drosophila 182-kDa polymerase subunit was not inhibited by the two analogs. In contrast, DNA synthesis by the intact Drosophila polymerase-primase complex was inhibited greater than 95% by these analogs.  相似文献   

14.
The B-subunits associated with the replicative DNA polymerases are conserved from Archaea to humans, whereas the corresponding catalytic subunits are not related. The latter belong to the B and D DNA polymerase families in eukaryotes and archaea, respectively. Sequence analysis places the B-subunits within the calcineurin-like phosphoesterase superfamily. Since residues implicated in metal binding and catalysis are well conserved in archaeal family D DNA polymerases, it has been hypothesized that the B-subunit could be responsible for the 3′-5′ proofreading exonuclease activity of these enzymes. To test this hypothesis we expressed Methanococcus jannaschii DP1 (MjaDP1), the B-subunit of DNA polymerase D, in Escherichia coli, and demonstrate that MjaDP1 functions alone as a moderately active, thermostable, Mn2+-dependent 3′-5′ exonuclease. The putative polymerase subunit DP2 is not required. The nuclease activity is strongly reduced by single amino acid mutations in the phosphoesterase domain indicating the requirement of this domain for the activity. MjaDP1 acts as a unidirectional, non-processive exonuclease preferring mispaired nucleotides and single-stranded DNA, suggesting that MjaDP1 functions as the proofreading exonuclease of archaeal family D DNA polymerase.  相似文献   

15.
Polymerase chain reaction (PCR) amplification of multiple templates using common primers is used in a wide variety of molecular biological techniques. However, abundant templates sometimes obscure the amplification of minor species containing the same primer sequences. To overcome this challenge, we used oligoribonucleotides (ORNs) to inhibit amplification of undesired template sequences without affecting amplification of control sequences lacking complementarity to the ORNs. ORNs were effective at very low concentrations, with IC50 values for ORN-mediated suppression on the order of 10 nM. DNA polymerases that retain 3′–5′ exonuclease activity, such as KOD and Pfu polymerases, but not those that retain 5′–3′ exonuclease activity, such as Taq polymerase, could be used for ORN-mediated suppression. ORN interference-PCR (ORNi-PCR) technology should be a useful tool for both molecular biology research and clinical diagnosis.  相似文献   

16.
The 3′→5′ exonuclease activity intrinsic to several DNA polymerases plays a primary role in genetic stability; it acts as a first line of defense in correcting DNA polymerase errors. A mismatched basepair at the primer terminus is the preferred substrate for the exonuclease activity over a correct basepair. The efficiency of the exonuclease as a proofreading activity for mispairs containing a DNA lesion varies, however, being dependent upon both the DNA polymerase/exonuclease and the type of DNA lesion. The exonuclease activities intrinsic to the T4 polymerase (family B) and DNA polymerase γ (family A) proofread DNA mispairs opposite endogenous DNA lesions, including alkylation, oxidation, and abasic adducts. However, the exonuclease of the Klenow polymerase cannot discriminate between correct and incorrect bases opposite alkylation and oxidative lesions. DNA damage alters the dynamics of the intramolecular partitioning of DNA substrates between the 3′→5′ exonuclease and polymerase activities. Enzymatic idling at lesions occurs when an exonuclease activity efficiently removes the same base that is preferentially incorporated by the DNA polymerase activity. Thus, the exonuclease activity can also act as a kinetic barrier to translesion synthesis (TLS) by preventing the stable incorporation of bases opposite DNA lesions. Understanding the downstream consequences of exonuclease activity at DNA lesions is necessary for elucidating the mechanisms of translesion synthesis and damage-induced cytotoxicity.  相似文献   

17.
Replicative DNA polymerases possess 3′ → 5′ exonuclease activity to reduce misincorporation of incorrect nucleotides by proofreading during replication. To examine if this proofreading activity modulates DNA synthesis of damaged templates, we constructed a series of recombinant human DNA polymerase δ (Pol δ) in which one or two of the three conserved Asp residues in the exonuclease domain are mutated, and compared their properties with that of the wild-type enzyme. While all the mutant enzymes lost more than 95% exonuclease activity and severely decreased the proofreading activity than the wild-type, the bypass efficiency of damaged templates was varied: two mutant enzymes, D515V and D402A/D515A, gave higher bypass efficiencies on templates containing an abasic site, but another mutant, D316N/D515A, showed a lower bypass efficiency than the wild-type. All the enzymes including the wild-type inserted an adenine opposite the abasic site, whereas these enzymes inserted cytosine and adenine opposite an 8-oxoguanine with a ratio of 6:4. These results indicate that the exonuclease activity of human Pol δ modulates its intrinsic bypass efficiency on the damaged template, but does not affect the choice of nucleotide to be inserted.  相似文献   

18.
Replicative DNA polymerases require an RNA primer for leading and lagging strand DNA synthesis, and primase is responsible for the de novo synthesis of this RNA primer. However, the archaeal primase from Pyrococcus furiosus (Pfu) frequently incorporates mismatched nucleoside monophosphate, which stops RNA synthesis. Pfu DNA polymerase (PolB) cannot elongate the resulting 3′-mismatched RNA primer because it cannot remove the 3′-mismatched ribonucleotide. This study demonstrates the potential role of a RecJ-like protein from P. furiosus (PfRecJ) in proofreading 3′-mismatched ribonucleotides. PfRecJ hydrolyzes single-stranded RNA and the RNA strand of RNA/DNA hybrids in the 3′–5′ direction, and the kinetic parameters (Km and Kcat) of PfRecJ during RNA strand digestion are consistent with a role in proofreading 3′-mismatched RNA primers. Replication protein A, the single-stranded DNA–binding protein, stimulates the removal of 3′-mismatched ribonucleotides of the RNA strand in RNA/DNA hybrids, and Pfu DNA polymerase can extend the 3′-mismatched RNA primer after the 3′-mismatched ribonucleotide is removed by PfRecJ. Finally, we reconstituted the primer-proofreading reaction of a 3′-mismatched ribonucleotide RNA/DNA hybrid using PfRecJ, replication protein A, Proliferating cell nuclear antigen (PCNA) and PolB. Given that PfRecJ is associated with the GINS complex, a central nexus in archaeal DNA replication fork, we speculate that PfRecJ proofreads the RNA primer in vivo.  相似文献   

19.
When DNA breakage results in a 3′-PO4 terminus, the end is considered ‘dirty’ because it cannot prime repair synthesis by DNA polymerases or sealing by classic DNA ligases. The noncanonical ligase RtcB can guanylylate the DNA 3′-PO4 to form a DNA3′pp5′GOH cap. Here we show that DNA capping precludes end joining by classic ATP-dependent and NAD+-dependent DNA ligases, prevents template-independent nucleotide addition by mammalian terminal transferase, blocks exonucleolytic proofreading by Escherichia coli DNA polymerase II and inhibits proofreading by E. coli DNA polymerase III, while permitting templated DNA synthesis from the cap guanosine 3′-OH primer by E. coli DNA polymerase II (B family) and E. coli DNA polymerase III (C family). Human DNA polymerase β (X family) extends the cap primer predominantly by a single templated addition step. Cap-primed synthesis by templated polymerases embeds a pyrophosphate-linked ribonucleotide in DNA. We find that the embedded ppG is refractory to surveillance and incision by RNase H2.  相似文献   

20.
Fluorescent-labeled DNA is generated through enzymatic incorporation of fluorophore-linked 2′-deoxyribonucleoside-5′-triphosphates (dNTPs) by DNA polymerases. We describe the synthesis of a variety of dye-labeled dNTPs. Amino-linker-modified 5′-triphosphates of all four naturally occurring nucleobases were used as precursors. Commercially available dyes were coupled to the amino function of the side chain. In addition, we attached novel fluorophore derivatives. The labeled products were obtained in at least 96% purity after HPLC purification. Enzymatic incorporation into DNA and subsequent extension of the modified DNA chain were studied. VentR exo DNA polymerase and a defined template–primer system were used to analyze each dye-labeled dNTP derivative. Our data suggest that the incorporation efficiency depends on the selected dye, the nucleobase or a combination of both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号