首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Impaired glucose-stimulated insulin secretion (GSIS) and perturbed proinsulin processing are hallmarks of beta cell dysfunction in type 2 diabetes. Signals that can preserve and/or enhance beta cell function are therefore of great therapeutic interest. Here we show that bone morphogenetic protein 4 (Bmp4) and its high-affinity receptor, Bmpr1a, are expressed in beta cells. Mice with attenuated BMPR1A signaling in beta cells show decreased expression of key genes involved in insulin gene expression, proinsulin processing, glucose sensing, secretion stimulus coupling, incretin signaling, and insulin exocytosis and develop diabetes due to impaired insulin secretion. We also show that transgenic expression of Bmp4 in beta cells enhances GSIS and glucose clearance and that systemic administration of BMP4 protein to adult mice significantly stimulates GSIS and ameliorates glucose tolerance in a mouse model of glucose intolerance. Thus, BMP4-BMPR1A signaling in beta cells plays a key role in GSIS.  相似文献   

2.
3.
Thorens B 《Cell metabolism》2011,14(4):439-440
The molecular mechanisms linking diet, obesity, and type 2 diabetes are still poorly understood. In a recent paper, Ohtsubo et?al. (2011) show that high lipid levels induce nuclear exclusion of Foxa2 and HNF1α in β cells, leading to impaired expression and glycosylation of proteins controlling glucose-stimulated insulin secretion.  相似文献   

4.
5.
6.
beta cells sense glucose through its metabolism and the resulting increase in ATP, which subsequently stimulates insulin secretion. Uncoupling protein-2 (UCP2) mediates mitochondrial proton leak, decreasing ATP production. In the present study, we assessed UCP2's role in regulating insulin secretion. UCP2-deficient mice had higher islet ATP levels and increased glucose-stimulated insulin secretion, establishing that UCP2 negatively regulates insulin secretion. Of pathophysiologic significance, UCP2 was markedly upregulated in islets of ob/ob mice, a model of obesity-induced diabetes. Importantly, ob/ob mice lacking UCP2 had restored first-phase insulin secretion, increased serum insulin levels, and greatly decreased levels of glycemia. These results establish UCP2 as a key component of beta cell glucose sensing, and as a critical link between obesity, beta cell dysfunction, and type 2 diabetes.  相似文献   

7.
In vertebrates, beta cells are aggregated in the form of pancreatic islets. Within these islets, communication between beta cells inhibits basal insulin secretion and enhances glucose-stimulated insulin secretion, thus contributing to glucose homeostasis during fasting and feeding. In the search for the underlying molecular mechanism, we have discovered that beta cells communicate via ephrin-As and EphAs. We provide evidence that ephrin-A5 is required for glucose-stimulated insulin secretion. We further show that EphA-ephrin-A-mediated beta cell communication is bidirectional: EphA forward signaling inhibits insulin secretion, whereas ephrin-A reverse signaling stimulates insulin secretion. EphA forward signaling is downregulated in response to glucose, which indicates that, under basal conditions, beta cells use EphA forward signaling to suppress insulin secretion and that, under stimulatory conditions, they shift to ephrin-A reverse signaling to enhance insulin secretion. Thus, we explain how beta cell communication in pancreatic islets conversely affects basal and glucose-stimulated insulin secretion to improve glucose homeostasis.  相似文献   

8.
9.
10.
It is commonly accepted that insulin secretion follows the pattern of an inverted U, also termed 'Starling's curve of the pancreas' during the natural history of hyperglycemia in glucose intolerance and type 2 diabetes. This concept is based on the cross-sectional observation that insulin concentrations initially increase when insulin sensitivity declines (as a consequence of obesity, for example) and decrease when glucose tolerance deteriorates (impaired glucose tolerance or overt type 2 diabetes). The initial increase in insulin concentrations has been viewed as 'hypersecretion' of insulin, thought to indicate that beta cell dysfunction is not etiological but secondary in nature. However, this view is oblivious to the now well-established fact that assessment of insulin secretion must account for individual insulin sensitivity. Here, we revisit the concept of Starling's curve of the pancreas based on first-phase C-peptide concentrations (hyperglycemic clamp) from subjects with normal glucose tolerance (n=66), impaired glucose tolerance (n=19) and mild type 2 diabetes (n=9). In absolute terms, first-phase C-peptide concentrations plotted against increasing fasting glucose concentrations indeed followed an inverted U. However, adjusted for direct and indirect measures of insulin sensitivity (insulin sensitivity index from the hyperglycemic clamp, body mass index, age and sex), first-phase C-peptide concentrations of the same individuals tended to decrease steadily. In conclusion, while the Starling curve exists for insulin concentrations, and perhaps also for insulin secretion, it does not hold for beta-cell function if that term were to imply appropriateness of insulin secretion (based on a formal test of glucose-stimulated insulin secretion) for the degree of insulin resistance, as it should.  相似文献   

11.
On the role of uncoupling protein-2 in pancreatic beta cells   总被引:2,自引:0,他引:2  
Pancreatic beta cells secrete insulin when blood glucose levels are high. Dysfunction of this glucose-stimulated insulin secretion (GSIS) is partly responsible for the manifestation of type 2 diabetes, a metabolic disorder that is rapidly becoming a global pandemic. Mitochondria play a central role in GSIS by coupling glucose oxidation to production of ATP, a signal that triggers a series of events that ultimately leads to insulin release. Beta cells express a mitochondrial uncoupling protein, UCP2, which is rather surprising as activity of such a protein is anticipated to lower the efficiency of oxidative phosphorylation, and hence to impair GSIS. The mounting evidence demonstrating that insulin secretion is indeed blunted by UCP2 agrees with this prediction, and has provoked the idea that UCP2 activity contributes to beta cell pathogenesis and development of type 2 diabetes. Although this notion may be correct, the evolved function of UCP2 remains unclear. With this paper we aim to provide a brief account of the present state of affairs in this field, suggest a physiological role for UCP2, and highlight some of our own recent results.  相似文献   

12.
13.
Chronic hyperglycemia is a hallmark of type 2 diabetes and can contribute to progressive beta cell dysfunction and death. The aim of the present study was to identify pathways mediating high glucose-induced beta cell demise by a proteomic approach. INS-1E cells were exposed to 25 mM glucose for a sustained period of 24 h. Protein profiling of INS-1E cells was done by two-dimensional difference gel electrophoresis, covering the pH ranges 4-7 and 6-9 (n = 4). Differentially expressed proteins (P < 0.05) were identified by MALDI-TOF/TOF and proteomic results were confirmed by functional assays. High glucose levels impaired glucose-stimulated insulin secretion and decreased insulin content. 2D-DIGE analysis revealed 100 differentially expressed proteins that were involved in different pathways. Chaperone proteins were down-regulated, protein biosynthesis and ubiquitin-related proteasomal degradation were attenuated and perturbations in intracellular trafficking and vesicle transport and secretion could be observed. Moreover, several pathways were confirmed by functional assays and a direct role for eEF2 in insulin biosynthesis was demonstrated. The present findings provide new insights in glucotoxicity and identify key target proteins for the prevention and treatment of beta cell dysfunction in type 2 diabetes.  相似文献   

14.
Protein kinase C (PKC) is considered to modulate glucose-stimulated insulin secretion. Pancreatic beta cells express multiple isoforms of PKCs; however, the role of each isoform in glucose-stimulated insulin secretion remains controversial. In this study we investigated the role of PKCdelta, a major isoform expressed in pancreatic beta cells on beta cell function. Here, we showed that PKCdelta null mice manifested glucose intolerance with impaired insulin secretion. Insulin tolerance test showed no decrease in insulin sensitivity in PKCdelta null mice. Studies using islets isolated from these mice demonstrated decreased glucose- and KCl-stimulated insulin secretion. Perifusion studies indicated that mainly the second phase of insulin secretion was decreased. On the other hand, glucose-induced influx of Ca2+ into beta cells was not altered. Immunohistochemistry using total internal reflection fluorescence microscopy and electron microscopic analysis showed an increased number of insulin granules close to the plasma membrane in beta cells of PKCdelta null mice. Although PKC is thought to phosphorylate Munc18-1 and facilitate soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors complex formation, the phosphorylation of Munc18-1 by glucose stimulation was decreased in islets of PKCdelta null mice. We conclude that PKCdelta plays a non-redundant role in glucose-stimulated insulin secretion. The impaired insulin secretion in PKCdelta null mice is associated with reduced phosphorylation of Munc18-1.  相似文献   

15.
Taurine is a conditionally essential amino acid for human that is involved in the control of glucose homeostasis; however, the mechanisms by which the amino acid affects blood glucose levels are unknown. Using an animal model, we have studied these mechanisms. Mice were supplemented with taurine for 30 d. Blood glucose homeostasis was assessed by intraperitoneal glucose tolerance tests (IPGTT). Islet cell function was determined by insulin secretion, cytosolic Ca2+ measurements and glucose metabolism from isolated islets. Islet cell gene expression and translocation was examined via immunohistochemistry and quantitative real-time polymerase chain reaction. Insulin signaling was studied by Western blot. Islets from taurine-supplemented mice had: (i) significantly higher insulin content, (ii) increased insulin secretion at stimulatory glucose concentrations, (iii) significantly displaced the dose-response curve for glucose-induced insulin release to the left, (iv) increased glucose metabolism at 5.6 and 11.1-mmol/L concentrations; (v) slowed cytosolic Ca2+ concentration ([Ca2+]i) oscillations in response to stimulatory glucose concentrations; (vi) increased insulin, sulfonylurea receptor-1, glucokinase, Glut-2, proconvertase and pancreas duodenum homeobox-1 (PDX-1) gene expression and (vii) increased PDX-1 expression in the nucleus. Moreover, taurine supplementation significantly increased both basal and insulin stimulated tyrosine phosphorylation of the insulin receptor in skeletal muscle and liver tissues. Finally, taurine supplemented mice showed an improved IPGTT. These results indicate that taurine controls glucose homeostasis by regulating the expression of genes required for glucose-stimulated insulin secretion. In addition, taurine enhances peripheral insulin sensitivity.  相似文献   

16.
Dysfunction of the pancreatic beta cell is an important defect in the pathogenesis of type 2 diabetes, although its exact relationship to the insulin resistance is unclear. To determine whether insulin signaling has a functional role in the beta cell we have used the Cre-loxP system to specifically inactivate the insulin receptor gene in the beta cells. The resultant mice exhibit a selective loss of insulin secretion in response to glucose and a progressive impairment of glucose tolerance. These data indicate an important functional role for the insulin receptor in glucose sensing by the pancreatic beta cell and suggest that defects in insulin signaling at the level of the beta cell may contribute to the observed alterations in insulin secretion in type 2 diabetes.  相似文献   

17.
18.
Obesity is typically associated with elevated levels of free fatty acids (FFAs) and is linked to glucose intolerance and type 2 diabetes. FFAs exert divergent effects on insulin secretion from beta cells: acute exposure to FFAs stimulates insulin secretion, whereas chronic exposure impairs insulin secretion. The G protein-coupled receptor GPR40 is selectively expressed in beta cells and is activated by FFAs. We show here that GPR40 mediates both acute and chronic effects of FFAs on insulin secretion and that GPR40 signaling is linked to impaired glucose homeostasis. GPR40-deficient beta cells secrete less insulin in response to FFAs, and loss of GPR40 protects mice from obesity-induced hyperinsulinemia, hepatic steatosis, hypertriglyceridemia, increased hepatic glucose output, hyperglycemia, and glucose intolerance. Conversely, overexpression of GPR40 in beta cells of mice leads to impaired beta cell function, hypoinsulinemia, and diabetes. These results suggest that GPR40 plays an important role in the chain of events linking obesity and type 2 diabetes.  相似文献   

19.
20.
High levels of fatty acids contribute to loss of functional beta cell mass in type 2 diabetes, in particular in combination with high glucose levels. The aim of this study was to elucidate the role of the unsaturated free fatty acid oleate in glucolipotoxicity and to unravel the molecular pathways involved. INS-1E cells were exposed to 0.5 mM oleate, combined or not with 25 mM glucose, for 24 h. Protein profiling of INS-1E cells was done by 2D-DIGE, covering pH ranges 4-7 and 6-9 (n = 4). Identification of differentially expressed proteins (P < 0.05) was based on MALDI-TOF analysis using Peptide Mass Fingerprint (PMF) and fragmentation (MS/MS) of the most intense peaks of PMF and proteomic results were confirmed by functional assays. Oleate impaired glucose-stimulated insulin secretion and decreased insulin content. 2D-DIGE analysis revealed 53 and 54 differentially expressed proteins for oleate and the combination of oleate and high glucose, respectively. Exposure to oleate down-regulated chaperones, hampered insulin processing and ubiquitin-related proteasomal degradation, and induced perturbations in vesicle transport and budding. In combination with high glucose, shunting of excess amounts of glucose toward reactive oxygen species production worsened beta cell death. The present findings provide new insights in oleate-induced beta cell dysfunction and identify target proteins for preservation of functional beta cell mass in type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号