首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Subunit Proteins of Photosystem I   总被引:2,自引:0,他引:2  
Photosystem I (PS I) is a supramolecular complex in thylakoidmembranes and mediates the light-driven electron flow from plastocyanin(or cytochrome c553) to ferredoxin. It has been establishedthat the PS I complex consists of more than 10 different subunitproteins that ligate 100 to 200 molecules of chlorophylls includingP700, two molecules of phylloquinone and three iron-sulfur centers(FX, FA, FB). The identity and properties of these PS I subunitproteins have been extensively studied, and their genes haverecently been cloned and mutagenized. The current status ofthese investigations is summarized. (Received May 8, 1992; )  相似文献   

2.
The photoactive reaction center (RC) complex from the greensulfur bacterium Chlorobium limicola f. thiosulfatophilum, strainLarsen, was isolated after solubilization and ammonium sulfatefractionation followed by ion-exchange chromatography. The spectrumof the complex was almost identical with that of the similarRC complex isolated by Feiler et al. [(1992) Biochemistry 31:2608–2614] except for the presence of cytochrome c551instead of c553 in the latter study. A molecular ratio of BChla to P840 of the isolated RC complex was assayed to be 25–35.SDSPAGE analysis revealed that the isolated complex containedthree major polypeptides with apparent molecular masses of 68,41 and 21 kDa, respectively. The 21-kDa polypeptide was identifiedto be a heme-binding protein by staining the gel for peroxidaseactivity. The cytochrome c551 was oxidized by flash light ina biphasic manner with half times of 90 and 390 µs, respectively,that coincided with the reduction half times of P840+. Threedistinct iron-sulfur centers assigned to FA, FB and Fx, respectively,from their g-values were detected by EPR spectroscopy at cryogenictemperature. These results suggest that the present preparationcontains a minimal functional unit of the RC of this bacterium,and that this complex appears to lie on a evolutionary linebetween RC's of purple bacteria and photosystem I. (Received August 18, 1992; Accepted October 28, 1992)  相似文献   

3.
《BBA》1987,893(2):149-160
The Photosystem I reaction center is a membrane-bound, multiprotein complex containing a primary electron donor (P-700), a primary electron acceptor (A0), an intermediate electron acceptor (A1) and three membrane-bound iron-sulfur centers (FX, FB, and FA). We reported in part I of this series (Golbeck, J.H. and Cornelius, J.M. (1986) Biochim. Biophys. Acta 849, 16–24) that in the presence of 1% lithium dodecyl sulfate (LDS), the reaction center becomes dissociated, resulting in charge separation and recombination between P-700 and FX without the need for prereduction of FA and FB. In this paper, we report (i) the LDS-induced onset of the 1.2-ms ‘fast’ phase of the P-700 absorption transient is time-dependent, attaining a maximum 3:1 ratio of ‘fast’ to ‘slow’ kinetic phases; (ii) the ‘fast’ kinetic phase, corresponding to the P-700+ FX backreaction, is stabilized indefinitely by dilution of the LDS-treated particle followed by ultrafiltration over a YM-100 membrane; (iii) without stabilization, the P-700+ FX reaction deteriorates, leading to the rise of the long-lived P-700 triplet formed from the P-700+AO backreaction; (iv) the ‘slow’ kinetic phase correlates with the redox and ESR properties of FA and/or FB, which indicates that in a minority of particles the terminal iron-sulfur protein remains attached to the reaction center core; (v) the ultrafiltered reaction center is severely deficient in all of the low molecular-weight polypeptides, particularly the 19-kDa, 18-kDa and 12-kDa polypeptides relative to the 64-kDa polypeptide(s); (vi) the stabilized particle contains 5.8 mol labile sulfide per mol photoactive P-700, reflecting largely the iron-sulfur content of Fx, but also residual FA and FB, on the reaction center; and (vii) the apoproteins of FA and FB are physically removed from the reaction center particle as indicated by the presence of protein-bound zero-valence sulfur in the YM-100 filtrate. These results are interpreted in terms of a model for Photosystem I in which FA and FB are located on a low-molecular-weight polypeptide and FX is depicted as a [2Fe-2S] cluster shared between the two high-molecular-weight polypeptides Photosystem I-A1 and Photosystem I-A2.  相似文献   

4.
To study electrogenesis the photosystem I particles fromSynechococcus elongatus were incorporated into asolectin liposomes, and fast kinetics of laser flash-induced electric potential difference generation has been measured by a direct electrometric method in proteoliposomes adsorbed on a phospholipid-impregnated collodion film. The photoelectric response has been found to involve three electrogenic stages associated with (i) iron-sulfur center Fx reduction by the primary electron donor P700, (ii) electron transfer between iron-sulfur centers Fx and FA/FB, and (iii) reduction of photo-oxidized P700+ by reduced cytochromec 553. The relative magnitudes of phases (ii) and (iii) comprised about 20% of phase (i).  相似文献   

5.
《BBA》1985,807(1):35-43
EPR study of reduced ground and photoexcited triplet state of Photosystem I reaction center in the thermophylic cyanobacterium Mastigocladus laminosus at 8 K is reported. In the reduced ground state preparation, the iron-sulfur EPR spectra are found to be similar to that of Photosystem I reaction center of higher plants. Two types of transient photoexcited triplets are observed and are correlated to the reduction state of the iron-sulfur centers. When electrons can be transferred freely through the acceptors chain, a polarized triplet spectrum is observed, typical of spin-orbit intersystem crossing mechanism with lifetime of approx. 2 ms and is attributed to chlorophyll a, either at the antenna or at A1 in the electron-transport chain. When the iron-sulfur centers are reduced the triplet spectrum is typical of a radical-pair intersystem crossing mechanism with triplet lifetime shorter than 1 ms, and is attributed to P-700. Both species have similar spectroscopic zero field splitting parameters identifying both as chlorophyll a.  相似文献   

6.
The quantitative relationship between reaction centers I andII was studied with blue-green algae Anabaena cylindrica, Anabaenavariabilis and Anacystis nidulans grown under different lightconditions. The number of reaction centers I was estimated fromthe P700 content and that of reaction centers II, from the O2yield of repetitive short flashes. Supplementary determinationswere done with three other blue-green algae and one red alga.The maximum number of reaction centers II counted from the O2yield of repetitive short flashes was markedly smaller thanthe total number of P700 in all algae tested when the algaewere grown under weak light; in the extreme case (Anabaena cylindrica),the ratio was only 0.258?0.015. This ratio became larger andclose to unity when the algae were grown under stronger light.Variation in the number of reaction centers in a single cellsuggested that reaction center I was a variable component. Ourresults indicate that the proportion of the two reaction centersmay markedly vary in blue-green algae depending on the growthconditions (Received November 13, 1978; )  相似文献   

7.
The Photosystem I primary reaction, as measured by electron paramagnetic resonance changes of P-700 and a bound iron-sulfur center, has been studied at 15°K in P-700-chlorophyll a-protein complexes isolated from a blue-green alga. One complex, prepared with sodium dodecyl sulfate shows P-700 photooxidation only at 300°K, whereas a second complex, prepared with Triton X-100, is photochemically active at 15°K as well as at 300°K. Analysis of these two preparations shows that the absence of low-temperature photoactivity in the sodium dodecyl sulfate complex reflects a lack of bound iron-sulfur centers in this preparation and supports the assignment of an iron-sulfur center as the primary electron acceptor of Photosystem I.  相似文献   

8.
《BBA》1987,891(1):94-98
Core extrusion of the bound iron-sulfur centers from spinach Photosystem I showed the presence of [2Fe-2S] clusters as well as [4Fe-4S] clusters among FA, FB and FX. Extrusion of the iron-sulfur ensemble was not quantitative; however, the presence of [2Fe-2S] clusters correlated with higher concentration of unfolding solvent. Since FX is highly resistant to denaturation, and since FA and FB are known to contain [4Fe-4S] clusters, the [2Fe-2S] clusters are assigned to FX. The presence of [2Fe-2S] clusters in Photosystem I has significance in the structure and organization of FX on the reaction center. Since four cysteinyl ligands are assumed to hold an iron-sulfur cluster, a Photosystem I subunit may consist of two approx. 64-kDa proteins bridged by a single [2Fe-2S] cluster. The complete reaction center would consist of two subunits positioned so that two [2Fe-2S] clusters are in magnetic interaction, thereby constituting FX.  相似文献   

9.
The Photosystem I primary reaction, as measured by electron paramagnetic resonance changes of P-700 and a bound iron-sulfur center, has been studied at 15 degrees K in P-700-chlorophyll alpha-protein complexes isolated from a blue-green alga. One complex, prepared with sodium dodecyl sulfate shows P-700 photooxidation only at 300 degrees K, whereas a second complex, prepared with Triton X-100, is photochemically active at 15 degrees K as well as at 300 degrees K. Analysis of these two preparations shows that the absence of low-temperature photoactivity in the sodium dodecyl sulfate complex reflects a lack of bound iron-sulfur centers in this preparation and supports the assignment of an iron-sulfur center as the primary electron acceptor of Photosystem I.  相似文献   

10.
The contents of photosystem I and photosystem II reaction centers,cytochrome c-553, cytochrome c-550, cytochrome f, cytochromeb-559, cytochrome b-563, plastoquinone and vitamin K1 in thecyanobacterium Synechococcus sp. were determined. About threephotosystem I reaction centers were present for each photosystemII reaction center. The amounts of cytochromes functioning betweenthe two photosystems were approximately half those of the photosystemI reaction center. Plastocyanin was not detected, while plastoquinoneand vitamin K1 were present in excess of other electron carriersand reaction centers. The results indicate the importance ofplastoquinone and cytochrome c-553 for cooperation of the tworeaction centers through electron transport. 1Present address: Toray Basic Research Laboratory, 1111 Tebiro,Kamakura, Kanagawa 248, Japan. (Received June 17, 1982; Accepted January 17, 1983)  相似文献   

11.
Intact leaves of Phascolus mdgaris were illuminated with strongblue light to induce a transition of pigment states from a highfluorescent state (State I) to a low fluorescent state (StateII), and their fluorescence induction curves were measured atroom temperature and low temperature. The induction curves at –196°C were measured at 692and 730 nm in order to investigate the states of PhotosystemII and Photosystem I separately. At 692 nm, the leaves in StateII showed one level of fluorescence without any variation, Fs,which was approximately the same as the initial Fo level inState I. At 730 nm, however, the Fs level was rather close tothe maximal FM level in State I. These results are discussed according to the model of photochemicalapparatus of photosynthesis proposed previously and interpretedthat the excitation energy is transferred directly from thereaction centers of Photosystem II to Photosystem I. (Received April 2, 1976; )  相似文献   

12.
Photosynthetic electron transfers through the water-solubleperipheral membrane proteins of plastocyanin and cytochromec2, were studied in spinach chloroplasts and the photosyntheticbacterium Rhodopseudomonas sphaeroides. In spinach chloroplasts,the rate of flash-induced oxidation of cytochrome f was highlydependent on the salt concentration in the suspending medium.The maximum rate with a half time of 200 µs was observedin the presence of 50 mas KCl or 5 mM MgCl2. The salt effectwas similar to that on the reaction rate between P700 in thylakoidfragments and externally added plastocyanin. On the other hand,in intact cells of R. sphaeroides, in which cytochrome c2 islocated in the periplasmic space exposed to the outer ionicenvironment, the rate of cytochrome c1 oxidation via cytochromec2 was almost independent of salt concentration. This independencewas a contrast to the strong dependence on salt concentrationof reactions between isolated reaction centers and cytochromec2 These results suggest that plastocyanin reacts collisionallywith the photosystem I reaction center and cytochrome b6f complexin a manner that is controlled by the surface electrostaticpotential. Cytochrome c2, on the other hand, reacts with thebacterial reaction center and cytochrome bc1 complex probablyby forming a complex prior to activation of the reaction center. 1 Present address: Department of Biology, Faculty of Science,Tokyo Metropolitan University, Fukazawa 2-1-1, Setagaya, Tokyo158, Japan.  相似文献   

13.
Incubation of thylakoid membranes from spinach with low concentrations of mercuric chloride induces the loss of one of the iron-sulfur centers, FB, in Photosystem I (PS I) and inhibits the electron transfer from PS I to the soluble electron carrier, ferredoxin. Reconstitution of this damaged iron-sulfur center has been carried out by incubating treated thylakoid membranes with exogenous FeCl3 and Na2S in the presence of-mercaptoethanol under anaerobic conditions. Low temperature EPR measurements indicate that center FB is largely restored. Kinetic experiments show that the restored FB can be photoreduced from P700. However, these reconstituted thylakoid membranes are still incompetent in the photoreduction of ferredoxin and NADP+, even though ferredoxin binding to the modified membranes was not impaired, indicating additional changes in the structure of the PS I complex must have occurred.  相似文献   

14.
Electron transfer mechanism in the spinach photosystem I reactioncenter that contains artificial quinones in place of phylloquinone(2-methyl-3-phytyl-1,4-naphthoquinone, vitamin K1) as the secondaryelectron acceptor, Qø (or A1) was discussed. (1) Mostof the reconstituted quinones oxidized the primary acceptorchlorophyll a, A0, at a rate rapid enough to compete againstthe charge recombination between A0 and the oxidizeddonor chlorophyll P700+. (2) The pathway of electron transferfrom the semiquinone varied depending on the redox potentialvalue of each semiquinone /quinone couple. Low potentialquinones reduced the tertiary acceptor iron-sulfur center, Fx,while the high potential ones reduced P700+ directly with a200-µs halftime. (3) The Em value of each semiquinone/quinone couple in situ in the reaction center was estimatedto be shifted by about 0.3 volt to the negative side from theirhalf wave redox potential values that were measured polarographicallyin dimethylformamide. The shift seems to represent the acceptorproperty of the protein environment at the Qø site. (4)The Em of reconstituted phylloquinone was estimated to be 50–80mV more negative than that of Fx. (5) The mechanism of efficientelectron transfer in the reaction center was discussed basedon the dynamic equilibria between the electron transfer componentsand on the estimated Em values. (Received April 9, 1994; Accepted July 7, 1994)  相似文献   

15.
Dark-grown barley (Hordeum vulgare) etioplasts were examined for their content of membrane-bound iron-sulfur centers by electron paramagnetic resonance spectroscopy at 15K. They were found to contain the high potential iron-sulfur center characterized (in the reduced state) by an electron paramagnetic resonance g value of 1.89 (the “Rieske” center) but did not contain any low potential iron-sulfur centers. Per mole of cytochrome f, dark-grown etioplasts and fully developed chloroplasts had the same content of the Rieske center. During greening of etioplasts under continuous light, low potential bound iron-sulfur centers appear. In addition, the photosystem I reaction center, as measured by the photooxidation of P700 at 15K, also became functional; during greening the appearance of a photoreducible low potential iron-sulfur center paralleled the appearance of P700 photoactivity.  相似文献   

16.
《BBA》1986,849(1):25-31
The Photosystem I electron acceptor complex was characterized by optical flash photolysis and electron spin resonance (ESR) spectroscopy after treatment of a subchloroplast particle with lithium dodecyl sulfate (LDS). The following properties were observed after 60 s of incubation with 1% LDS followed by rapid freezing. (i) ESR centers A and B were not observed during or after illumination of the sample at 19 K, although the P-700+ radical at g = 2.0026 showed a large, reversible light-minus-dark difference signal. (ii) Center ‘X’, characterized by g factors of 2.08, 1.88 and 1.78, exhibited reversible photoreduction at 8 K in the absence of reduced centers A and B. (iii) The backreaction kinetics at 8 K between P-700, observed at g = 2.0026, and center X, observed at g = 1.78, was 0.30 s. (iv) The amplitudes of the reversible g = 2.0026 radical observed at 19 K and the 1.2 ms optical 698 nm transient observed at 298 K were diminished to the same extent when treated with 1% LDS at room temperature for periods of 1 and 45 min. We interpret the strict correlation between the properties and lifetimes of the optical P-700+ A2 reaction pair and the ESR P-700+ center X reaction pair to indicate that signal A2 and center X represent the same iron-sulfur center in Photosystem I.  相似文献   

17.
The photoreduction of iron-sulfur centers was studied at low temperature in Photosystem I particles from spinach and the cyanobacterium Synechocystis 6803, which contain various amounts of vitamin K-1 (recently tentatively identified as the acceptor A1). The irreversible charge separation that was progressively induced at low temperature between P-700 and FA (or FB) by successive laser flashes was studied at 15 K. Its maximum amount after a large number of flashes was shown to be fairly independent of the number (0, 1 or 2) of vitamins K-1 per reaction center. Moreover, the first flash yield of this charge separation was diminished by only about 50% when vitamin K-1 was completely absent from the particles by comparison with particles containing one or two vitamin K-1 per reaction center. When FA and FB were prereduced, the iron-sulfur center FX was also reversibly photoreduced at 9 K in the absence of vitamin K-1. The implications of these results for the electron pathways of Photosystem I are discussed and it is proposed that a direct electron transfer from A0- to the iron-sulfur centers is highly efficient at low temperature.  相似文献   

18.
Photosynthetic reaction centers isolated from Heliobacillus mobilis exhibit a single major protein on SDS-PAGE of 47 000 Mr. Attempts to sequence the reaction center polypeptide indicated that the N-terminus is blocked. After enzymatic and chemical cleavage, four peptide fragments were sequenced from the Heliobacillus mobilis apoprotein. Only one of these sequences showed significant specific similarity to any of the protein and deduced protein sequences in the GenBank data base. This fragment is identical with 56% of the residues, including both cysteines, found in the highly conserved region that is proposed to bind iron-sulfur center FX in the Photosystem I reaction center peptide that is the psaB gene product. The similarity to the psaA gene product in this region is 48%.Redox titrations of laser-flash-induced photobleaching with millisecond decay kinetics on isolated reaction centers from Heliobacterium gestii indicate a midpoint potential of –414 mV with n=2 titration behavior. In membranes, the behavior is intermediate between n=1 and n=2, and the apparent midpoint potential is –444 mV. This is compared to the behavior in Photosystem I, where the intermediate electron acceptor A1, thought to be a phylloquinone molecule, has been proposed to undergo a double reduction at low redox potentials in the presence of viologen redox mediators.These results strongly suggest that the acceptor side electron transfer system in reaction centers from heliobacteria is indeed analogous to that found in Photosystem I. The sequence similarities indicate that the divergence of the heliobacteria from the Photosystem I line occurred before the gene duplication and subsequent divergence that lead to the heterodimeric protein core of the Photosystem I reaction center.Abbreviations BChl bacteriochlorophyll - %C percent bisacrylamide as a percentage of total acrylamide - DTT dithiothreitol - EPR electron paramagnetic resonance - Fe-S iron-sulfur center - H. Heliobacterium - Hb. Heliobacillus - k one thousand - Mr molecular retention - PS I Photosystem I - PS II Photosystem II - RCs reaction centers - SDS sodium dodecyl sulfate - SDS-PAGE sodium dodecyl sulfate polyacrylamide electrophoresis - %T percent total acrylamide - Tris tris(hydroxymethyl)aminomethane  相似文献   

19.
K. Satoh  R. Strasser  W.L. Butler 《BBA》1976,440(2):337-345
Photosystem I activity of Tris-washed chloroplasts was measured at room temperature as the rate of photoreduction of NADP and as the rate of oxygen uptake mediated by methyl viologen in both cases using dichlorophenolindophenol plus ascorbate as the source of electrons for Photosystem I. With both assay systems the rate of electron transport by Photosystem I was stimulated approx. 20 % by the addition of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea which caused the Photosystem II reaction centers to close. Photosystem I activity of chloroplasts was measured at low temperature as the rate of photooxidation of P-700. Chloroplasts suspended in the presence of hydroxylamine and 3-(3,4-dichlorophenyl)-1, 1-dimethylurea were frozen to ?196 °C after adaptation to darkness or after a preillumination at room temperature. The Photosystem II reaction centers of the frozen dark-adapted sample were all open; those of the preilluminated sample were all closed. The rate of photooxidation of P-700 at ?196 °C with the preilluminated sample was approx. 25 % faster than with the dark-adapted sample. We conclude from both the room temperature and the low temperature experiments that there is greater energy transfer from Photosystem II to Photosystem I when the Photosystem II reaction centers are closed and that these results are a direct demonstration of spillover.  相似文献   

20.
The Photosystem I acceptor system of a subchloroplast particle from spinach was investigated by optical and electron spin resonance (ESR) spectroscopy following graduated inactivation of the bound iron-sulfur proteins by urea/ferricyanide solution. The chemical analysis of iron and sulfur and the ESR properties of centers A, B and X are consistent with the participation of three iron-sulfur centers in Photosystem I. A differential decrease in centers A, B and X is observed under conditions that induce S2? →S0 conversion in the bound iron-sulfur proteins. Center B is shown to be the most susceptible, while center ‘X’ is the least susceptible component to oxidative denaturation. Stepwise inactivation experiments suggest that electron transport in Photosystem I does not occur sequentially from X→B→A, since there is quantitative photoreduction of center A in the absence of center B. We propose that center A is directly reduced by X; thus, X may serve as a branch point for parallel electron flow through centers A and B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号