首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteolytic processes involved in the cotranslational production of the Semliki Forest virus proteins p62, 6K, and E1 from a common precursor polypeptide were analyzed by an in vitro translation-translocation assay. By studying the behavior of wild-type and mutant variants of the polyprotein, we show that the signal sequences responsible for membrane translocation of the 6K and E1 proteins reside in the C-terminal regions of p62 and 6K, respectively. We present evidence suggesting that the polyprotein is processed on the luminal side by signal peptidase at consensus cleavage sites immediately following the signal sequences. Our results also lead us to conclude that the 6K protein is a transmembrane polypeptide with its N terminus on the luminal side of the membrane (type I). Thus, the production of all three membrane proteins is directed by alternating signal and stop-transfer (anchor) sequences that function in translocation and cleavage of the virus precursor polyprotein. This also shows conclusively that internally located signal sequences can be cleaved by signal peptidase.  相似文献   

2.
Site-directed oligonucleotide mutagenesis has been used to introduce chain termination codons into the cloned DNA sequences encoding the carboxy-terminal transmembrane (27 amino acids) and cytoplasmic (10 amino acids) domains of influenza virus hemagglutinin (HA). Four mutant genes were constructed which express truncated forms of HA that lack the cytoplasmic domain and terminate at amino acids 9, 14, 17, or 27 of the wild-type hydrophobic domain. Analysis of the biosynthesis and intracellular transport of these mutants shows that the cytoplasmic tail is not needed for the efficient transport of HA to the cell surface; the stop-transfer sequences are located in the hydrophobic domain; 17 hydrophobic amino acids are sufficient to anchor HA stably in the membrane; and mutant proteins with truncated hydrophobic domains show drastic alterations in transport, membrane association, and stability.  相似文献   

3.
A P van Loon  A W Br?ndli  G Schatz 《Cell》1986,44(5):801-812
Gene fusion experiments were used to identify signals that direct imported precursor proteins to specific intramitochondrial locations in yeast. The amino terminus of alcohol dehydrogenase III (ADHIII, a mitochondrial matrix enzyme) transported attached mouse dihydrofolate reductase (DHFR, a cytosolic enzyme) into the mitochondrial matrix. The presequence of cytochrome c1 (a mitochondrial inner membrane protein protruding into the intermembrane space) transported attached DHFR into the intermembrane space. The first half of the cytochrome c1 presequence, which resembles the ADHIII presequence, is a matrix-targeting sequence: it transported attached DHFR into the matrix. The second half of the cytochrome c1 presequence contains a stretch of 19 uncharged amino acids and may thus be a stop-transfer sequence. We conclude that intramitochondrial sorting involves matrix-targeting and stop-transfer sequences within the cleavable presequence.  相似文献   

4.
The orientation in cellular membranes of the 856 amino acid envelope glycoprotein precursor, gp160, of human immunodeficiency virus type 1 was investigated in vitro. Variants of the env gene were transcribed using the bacteriophage SP6 promoter, translated using a rabbit reticulocyte lysate, and translocated into canine pancreatic microsomal membranes. Immunoprecipitation studies of gp160 variants using antibodies specific for various gp160-derived polypeptides provided evidence that the external (cell surface) domain of gp160 begins at the mature amino terminus of the protein and continues through amino acid 665. A stop-transfer sequence (transmembrane domain) was identified in a hydrophobic region COOH-terminal to amino acid 665 and NH2-terminal to amino acid 732. Protease protection experiments demonstrated that gp160 possesses a single cytoplasmic domain COOH-terminal to residue 707. Membrane extraction studies using carbonate buffer provided evidence that the 29 amino acid hydrophobic domain (residues 512-541) of gp160 was unable to serve as a stop-transfer sequence. Finally, we propose that the cytoplasmic tail of gp160 forms a secondary association with the microsomal membranes.  相似文献   

5.
Microsomal cytochrome P450s (CYPs) are anchored to the endoplasmic reticulum membrane by the N-terminal signal-anchor sequence which is predicted to insert into the membrane as a type 1 transmembrane helix with a luminally located N-terminus. We have mapped amino acids of the CYP2C1 signal-anchor, fused to Cys-free glutathione S-transferase, within the membrane by Cys-specific labeling with membrane-impermeant maleimide polyethylene glycol. At the C-terminal end of the signal-anchor, Trp-20 was mapped to the membrane–cytosol interface and Leu-19 was within the membrane. Unexpectedly, at the N-terminal end, Glu-2 and Pro-3 were mapped to the cytoplasmic side of the membrane rather than the luminal side as expected of a type 1 transmembrane helix. Similar results were observed for the N-terminal amino acids of the signal-anchor sequences of CYP3A4 and CYP2E1. These observations indicate that contrary to the current model of the signal-anchor of CYPs as a type 1 transmembrane helix, CYP2C1, CYP2E1, and CYP3A4 are monotopic membrane proteins with N-terminal signal-anchors that have a hairpin or wedge orientation in the membrane.  相似文献   

6.
Co-translational translocation of proteins across the membrane of rough endoplasmic reticulum (ER) is interrupted by particular amino acid sequences, which are functionally termed "stop-transfer sequence." We analyzed the structural requirements for the interruption of the peptide translocation. By the manipulation of the cDNA of interleukin 2 (IL2), which passes through ER membrane co-translationally, the middle portion of the IL2 molecule was replaced with systematically altered hydrophobic segments, leucine, alanine, or leucine/alanine mixed clusters. Furthermore, charged amino acid residues were introduced just downstream of the hydrophobic segments. These modified IL2 peptides were synthesized with wheat germ cell-free system in the presence of rough microsomes and the topology of the peptides in the microsomes was assessed by post-translational digestion with proteinase K. We obtained the following results. (i) Each modified protein was processed to the mature form but the extent of stop-translocation varied widely. The ratio of the stopped to the translocated products increased as the length and hydrophobicity of the inserted segment increased. (ii) Shorter hydrophobic segments than naturally occurring native transmembrane segment promoted stop-translocation. (iii) Proteins with hydrophobic segments followed by positive charges were more efficiently stop-translocated than those having negative charges. (iv) If the hydrophobicity of the segment was sufficiently high, the positive charges after the segment were not essential for stop-translocation. We also suggest that the stop-transfer process includes protein-protein interaction between the hydrophobic segment and translocation channel.  相似文献   

7.
Most flagellar proteins are exported via a type III export apparatus which, in part, consists of the membrane proteins FlhA, FlhB, FliO, FliP, FliQ, and FliR and is housed within the membrane-supramembrane ring formed by FliF subunits. Salmonella FlhA is a 692-residue integral membrane protein with eight predicted transmembrane spans. Its function is not understood, but it is necessary for flagellar export. We have created mutants in which potentially important sequences were deleted. FlhA lacking the amino-terminal sequence prior to the first transmembrane span failed to complement and was dominant negative, suggesting that the sequence is required for function. Similar effects were seen in a variant lacking a highly conserved domain (FHIPEP) within a putative cytoplasmic loop. Scanning deletion analysis of the cytoplasmic domain (FlhAc) demonstrated that substantially all of FlhAc is required for efficient function. Affinity blotting showed that FlhA interacts with several other export apparatus membrane proteins. The implications of these findings are discussed, and a model of FlhA within the export apparatus is presented.  相似文献   

8.
9.
Recently, we fused a matrix-targeting signal to a large fragment of vesicular stomatitis virus G protein, which contains near its COOH-terminus a well-characterized endoplasmic reticulum (ER) stop-transfer sequence; the hybrid G protein was sorted to the inner mitochondrial membrane (Nguyen, M., and G. C. Shore. 1987. J. Biol. Chem. 262:3929-3931). Here, we show that the 19 amino acid G stop-transfer domain functions in an identical fashion when inserted toward the COOH-terminus of an otherwise normal matrix precursor protein, pre-ornithine carbamyl transferase; after import, the mutant protein was found anchored in the inner membrane via the stop-transfer sequence, with its NH2 terminus facing the matrix and its short COOH-terminal tail located in the intermembrane space. However, when the G stop-transfer sequence was placed near the NH2 terminus, the protein was inserted into the outer membrane, in the reverse orientation (NH2 terminus facing out, with a large COOH-terminal fragment located in the intermembrane space). These observations for mitochondrial topogenesis can be explained by a simple extension of existing models for ER sorting.  相似文献   

10.
Membrane topology of Escherichia coli diacylglycerol kinase.   总被引:1,自引:1,他引:0       下载免费PDF全文
The topology of Escherichia coli diacylglycerol kinase (DAGK) within the cytoplasmic membrane was elucidated by a combined approach involving both multiple aligned sequence analysis and fusion protein experiments. Hydropathy plots of the five prokaryotic DAGK sequences available were uniform in their prediction of three transmembrane segments. The hydropathy predictions were experimentally tested genetically by fusing C-terminal deletion derivatives of DAGK to beta-lactamase and beta-galactosidase. Following expression, the enzymatic activities of the chimeric proteins were measured and used to determine the cellular location of the fusion junction. These studies confirmed the hydropathy predictions for DAGK with respect to the number and approximate sequence locations of the transmembrane segments. Further analysis of the aligned DAGK sequences detected probable alpha-helical N-terminal capping motifs and two amphipathic alpha-helices within the enzyme. The combined fusion and sequence data indicate that DAGK is a polytopic integral membrane protein with three transmembrane segments with the N terminus of the protein in the cytoplasm, the C terminus in the periplasmic space, and two amphipathic helices near the cytoplasmic surface.  相似文献   

11.
A complete amino acid sequence for rat testis P-450(17)alpha was deduced from nucleotide analysis of a cDNA clone isolated from a rat Leydig cell cDNA library. This DNA clone, containing initiation and termination codons and a polyA tail, translated a polypeptide in COS-1 cells that expressed both 17 alpha-hydroxylase and 17,20 lyase activities. It exhibited significant similarity to the nucleotide and deduced amino acid sequences of the bovine and human cytochrome P-450(17)alpha, particularly with respect to the highly conserved regions and secondary structure. The P-450(17)alpha appears to be anchored to the membrane of the endoplasmic reticulum through two transmembrane regions, specifically the N terminal insertion peptide and the stop-transfer sequence. Hydropathic analysis indicates that the remainder of the C terminus is associated with the membrane through four hydrophobic clefts, including the putative steroid binding site.  相似文献   

12.
The immediate environment of nascent membrane proteins undergoing integration into the ER membrane was investigated by photocrosslinking. Nascent polypeptides of different lengths, each containing a single IgM transmembrane sequence that functions either as a stop-transfer or a signal-anchor sequence, were synthesized by in vitro translation of truncated mRNAs in the presence of N epsilon-(5-azido-2-nitrobenzoyl)-Lys-tRNA, signal recognition particle, and microsomal membranes. This yielded nascent chains with photoreactive probes at one end of the transmembrane sequence where two lysine residues are located. When irradiated, these nascent chains reacted covalently with several ER proteins. One prominent crosslinking target was a glycoprotein similar in size to a protein termed mp39, shown previously to be situated adjacent to a secretory protein during its translocation across the ER membrane (Krieg, U. C., A. E. Johnson, and P. Walter. 1989. J. Cell Biol. 109:2033-2043; Wiedmann, M., D. Goerlich, E. Hartmann, T. V. Kurzchalia, and T. A. Rapoport. 1989. FEBS (Fed. Eur. Biochem. Soc.) Lett. 257:263-268) and likely to be identical to a protein previously designated the signal sequence receptor (Wiedmann, M., T. V. Kurzchalia, E. Hartmann, and T. A. Rapoport. 1987. Nature (Lond.). 328:830-833). Changing the orientation of the transmembrane domain in the bilayer, or making the transmembrane domain the first topogenic sequence in the nascent chain instead of the second, did not significantly alter the identities of the ER proteins that were the primary crosslinking targets. Furthermore, the nascent chains crosslinked to the mp39-like glycoprotein and other microsomal proteins even after the cytoplasmic tail of the nascent chain had been lengthened by nearly 100 amino acids beyond the stop-transfer sequence. Yet when the nascent chain was allowed to terminate normally, the major photocrosslinks were no longer observed, including in particular that to the mp39-like glycoprotein. These results show that the transmembrane segment of a nascent membrane protein is located adjacent to the mp39-like glycoprotein and other ER proteins during the integration process, and that at least a portion of the nascent chain remains in close proximity to these ER proteins until translation has been completed.  相似文献   

13.
Uncleaved signal-anchor sequences of membrane proteins inserted into the endoplasmic reticulum initiate the translocation of either the amino-terminal or the carboxyl-terminal polypeptide segment across the bilayer. Which topology is acquired is not determined by the apolar segment of the signal but rather by the hydrophilic sequences flanking it. To study the role of charged residues in determining the membrane topology, the insertion of mutants of the asialoglycoprotein receptor H1, a single-spanning protein with a cytoplasmic amino terminus, was analyzed in transfected COS-7 cells. When the charged amino acids flanking the hydrophobic signal were mutated to residues of opposite charge, half the polypeptides inserted with the inverted orientation. When, in addition, the amino-terminal domain of the mutant protein was truncated, approximately 90% of the polypeptides acquired the inverted topology. The transmembrane orientation appears to be primarily determined by the charges flanking the signal sequence but is modulated by the domains to be translocated.  相似文献   

14.
The introduction of positive charges at the amino terminus of the mature domain of secretory proteins resulted in strong inhibition of their translocation across the cytoplasmic membrane of Escherichia coli, both in vitro and in vivo. The model secretory proteins used were OmpF-Lpp chimeric proteins possessing a cleavable or uncleavable signal peptide, beta-lactamase (Bla) and Bla-Lpp chimeric proteins. It is suggested that positively charged residues preceding the hydrophobic domain of the signal peptide have a positive effect, and ones following the hydrophobic domain, a negative effect on the translocation. These findings are discussed in relation to the orientation of membrane proteins, of which positive charges are predominant on the cytoplasmic surface.  相似文献   

15.
Xie K  Hessa T  Seppälä S  Rapp M  von Heijne G  Dalbey RE 《Biochemistry》2007,46(51):15153-15161
Topogenic sequences direct the membrane topology of proteins by being recognized and decoded by integral membrane translocases. In this paper, we have compared the minimal sequence characteristics of helical-hairpin, reverse signal-anchor, and stop-transfer sequences in bacterial membrane proteins that use either the YidC or SecYEG translocases for membrane insertion. We find that a stretch composed of 3 leucines and 16 alanines is required for efficient membrane-anchoring of the M13 procoat protein that inserts by a helical hairpin mechanism, and that a stretch composed of only 19 alanines has a detectable membrane-anchoring ability. Similar results were obtained for the reverse signal-anchor sequence of the single-spanning Pf3 coat protein and for stop-transfer segments engineered into leader peptidase. We have also determined the contribution to the apparent free energy of membrane insertion of M13 procoat for all 20 amino acids. The relative order of the contributions is similar to that determined for a stop-transfer sequence in the mammalian endoplasmic reticulum, but the absolute difference between the contributions for the most hydrophobic and most hydrophilic residues is somewhat larger in the E. coli system. These results are significant because they define the features of a membrane protein transmembrane segment that induce lateral release from the YidC and Sec translocases into the lipid bilayer in bacteria.  相似文献   

16.
Escherichia coli TonB protein is an energy transducer, coupling cytoplasmic membrane energy to active transport of vitamin B12 and iron-siderophores across the outer membrane. TonB is anchored in the cytoplasmic membrane by its hydrophobic amino terminus, with the remainder occupying the periplasmic space. In this report we establish several functions for the hydrophobic amino terminus of TonB. A G-26-->D substitution in the amino terminus prevents export of TonB, suggesting that the amino terminus contains an export signal for proper localization of TonB within the cell envelope. Substitution of the first membrane-spanning domain of the cytoplasmic membrane protein TetA for the TonB amino terminus eliminates TonB activity without altering TonB export, suggesting that the amino terminus contains sequence-specific information. Detectable TonB cross-linking to ExbB is also prevented, suggesting that the two proteins interact primarily through their transmembrane domains. In vivo cleavage of the amino terminus of TonB carrying an engineered leader peptidase cleavage site eliminates (i) TonB activity, (ii) detectable interaction with a membrane fraction having a density intermediate to those of the cytoplasmic and outer membranes, and (iii) cross-linking to ExbB. In contrast, the amino terminus is not required for cross-linking to other proteins with which TonB can form complexes, including FepA. Additionally, although the amino terminus clearly is a membrane anchor, it is not the only means by which TonB associates with the cytoplasmic membrane. TonB lacking its amino-terminal membrane anchor still remains largely associated with the cytoplasmic membrane.  相似文献   

17.
Potassium channels, which control the passage of K+ across cell membranes, have two transmembrane segments, M1 and M2, separated by a hydrophobic P region containing a highly conserved signature sequence. Here we analyzed the membrane topogenesis characteristics of the M1, M2, and P regions in two animal and bacterial two-transmembrane segment-type K+ channels, Kir 2.1 and KcsA, using an in vitro translation and translocation system. In contrast to the equivalent transmembrane segment, S5, in the voltage-dependent K+ channel, KAT1, the M1 segment in KcsA, was found to have a strong type II signal-anchor function, which favors the Ncyt/Cexo topology. The N-terminal cytoplasmic region was required for efficient, correctly orientated integration of M1 in Kir 2.1. Analysis of N-terminal modification by in vitro metabolic labeling showed that the N terminus in Kir 2.1 was acetylated. The hydrophobic P region showed no topogenic function, allowing it to form a loop, but not a transmembrane structure in the membrane; this region was transiently exposed in the endoplasmic reticulum lumen during the membrane integration process. M2 was found to possess a stop-transfer function and a type I signal-anchor function, enabling it to span the membrane. The C-terminal cytoplasmic region in KcsA was found to affect the efficiency with which the M2 achieved their final structure. Comparative topogenesis studies of Kir 2.1 and KcsA allowed quantification of the relative contributions of each segment and the cytoplasmic regions to the membrane topology of these two proteins. The membrane topogenesis of the pore-forming structure is discussed using results for Kir 2.1, KcsA, and KAT1.  相似文献   

18.
A sequence comparison of the two membrane-associated (MA) domains of the cystic fibrosis transmembrane conductance regulator (CFTR), multidrug resistance transporter (MDR), and -factor pheromone export system (STE6) proteins, each of which are believed to contain a total of 12 transmembrane (TM) segments, reveals significant amino acid homology and length conservation in the loop regions that connect individual TM sequences. Similar structural homology is observed between these proteins, hemolysin B (HLYB) and the major histocompatibility-linked peptide transporter, HAM1, the latter two which contain a single MA domain composed of six TM segments. In addition, there are specific sequences that are conserved within the TM segments of the five different membrane proteins. This observation suggests that the folding topologies of the MA domains of MDR, STE6, and CFTR in the plasma membrane are likely to be very similar. The sequence analysis also reveals that there are three characteristic motifs (a pair of aromatic residues, LTLXXXXXXP and GXXL) that are conserved in MDR, STE6, HLYB, HAM1, but not in CFTR. We propose that although CFTR may be evolutionarily related to these other membrane proteins, it belongs to a separate subclass.  相似文献   

19.
Transmembrane topography and evolutionary conservation of synaptophysin   总被引:21,自引:0,他引:21  
Synaptophysin is the major integral membrane protein of small synaptic vesicles. Its primary structure deduced from rat and human complementary DNA sequences predicts that synaptophysin contains four transmembrane regions and a carboxyl-terminal domain having a novel repetitive structure. To elucidate the transmembrane organization of this protein in the synaptic vesicle, five antipeptide antibodies were raised. The site-specific antibodies were used to map the cognate sequences to the cytoplasmic or intravesicular side of the synaptic vesicle membrane by determining the susceptibility of the epitopes to proteolysis. The results confirm a topographic model for synaptophysin in which the protein spans the vesicle membrane four times, with both the amino and carboxyl terminus being cytoplasmic. In addition, the evolutionary conservation of the synaptophysin domains was addressed as a function of their membrane localization. To this end the primary structure of bovine synaptophysin was determined. Sequence comparisons between bovine, rat, and human synaptophysin revealed that only the intravesicular loops showed a significant number of amino acid substitutions (22%), while the transmembrane regions and cytoplasmic sequences were highly conserved (3% substitutions). These results depict synaptophysin as a protein with multiple membrane spanning regions whose functional site is likely to reside in highly conserved intramembranous and cytoplasmic sequences.  相似文献   

20.
The Glut1 glucose transporter is one of over 300 members of the major facilitator superfamily of membrane transporters. These proteins are extremely diverse in substrate specificity and differ in their transport mechanisms. The two most common features shared by many members of this superfamily are the presence of 12 predicted transmembrane segments and an amino acid motif, R-X-G-R-R, present at equivalent positions within the cytoplasmic loops joining transmembrane segments 2-3 and 8-9. The structural and functional roles of the arginine residues within these motifs in Glut1 were investigated by expression of site-directed mutant transporters in Xenopus oocytes followed by analyses of intrinsic transport activity and the membrane topology of mutant glycosylation-scanning reporter Glut1 molecules. Substitution of lysine residues for the cluster of 3 arginine residues in each of the 2 cytoplasmic pentameric motifs of Glut1 revealed no absolute requirement for arginine side chains at any of the 6 positions for transport of 2-deoxyglucose. However, removal of the 3 positive charges at either site by substitution of glycines for the arginines completely abolished transport activity as the result of a local perturbation in the membrane topology in which the cytoplasmic loop was aberrantly translocated into the exoplasm along with the two flanking transmembrane segments. Substitution of lysines for the arginines had no affect on membrane topology. We conclude that the positive charges in the R-X-G-R-R motif form critical local cytoplasmic anchor points involved in determining the membrane topology of Glut1. These data provide a simple explanation for the presence of this conserved amino acid motif in hundreds of functionally diverse membrane transporters that share a common predicted membrane topology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号