首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We have identified a novel Ca(2+)-dependent interaction between neuronal calcium sensor-1 (NCS-1) and the GTPase ARF1. Both of these proteins are localized to the Golgi complex, and both regulate phosphatidylinositol 4-kinase IIIbeta (PI(4)Kbeta). Spatial and temporal control of phosphatidylinositol 4-phosphate levels through activation of PI(4)Kbeta is important for the recruitment of trafficking complexes to the trans-Golgi network (TGN) and vesicular traffic from this organelle. The NCS-1-ARF1 interaction and its specificity have been demonstrated through in vitro binding assays, in vitro enzyme assay, and through functional cellular assays. We show that NCS-1 can exert bidirectional effects to activate PI(4)Kbeta on its own or inhibit the activation by ARF1. NCS-1 was shown to modulate the effects of expression of ARF mutants that disrupt Golgi morphology and to recruit GDP-loaded ARF to the Golgi complex in a Ca(2+)-dependent manner. We demonstrate antagonist effects of NCS-1 and ARF on constitutive and regulated exocytosis. The NCS-1-ARF1 interaction provides evidence for functional cross-talk between Ca(2+)-dependent and ARF-dependent pathways in TGN to plasma membrane traffic.  相似文献   

2.
Phosphatidylinositol 4-kinases (PI4K) catalyze the first step in the synthesis of phosphatidylinositol 4,5-bisphosphate, an important lipid regulator of several cellular functions. Here we show that the Ca(2+)-binding protein, neuronal calcium sensor-1 (NCS-1), can physically associate with the type III PI4Kbeta with functional consequences affecting the kinase. Recombinant PI4Kbeta, but not its glutathione S-transferase-fused form, showed enhanced PI kinase activity when incubated with recombinant NCS-1, but only if the latter was myristoylated. Similarly, in vitro translated NCS-1, but not its myristoylation-defective mutant, was found associated with recombinant- or in vitro translated PI4Kbeta in PI4Kbeta-immunoprecipitates. When expressed in COS-7 cells, PI4Kbeta and NCS-1 formed a complex that could be immunoprecipitated with antibodies against either proteins, and PI 4-kinase activity was present in anti-NCS-1 immunoprecipitates. Expressed NCS-1-YFP showed co-localization with endogenous PI4Kbeta primarily in the Golgi, but it was also present in the walls of numerous large perinuclear vesicles. Co-expression of a catalytically inactive PI4Kbeta inhibited the development of this vesicular phenotype. Transfection of PI4Kbeta and NCS-1 had no effect on basal PIP synthesis in permeabilized COS-7 cells, but it increased the wortmannin-sensitive [(32)P]phosphate incorporation into phosphatidylinositol 4-phosphate during Ca(2+)-induced phospholipase C activation. These results together indicate that NCS-1 is able to interact with PI4Kbeta also in mammalian cells and may play a role in the regulation of this enzyme in specific cellular compartments affecting vesicular trafficking.  相似文献   

3.
We examined the possible occurrence and function of neuronal Ca(2+) sensor 1 (NCS-1/frequenin) in the mast cell line rat basophilic leukemia, RBL-2H3. This protein has been implicated in the control of neurosecretion from dense core granules in neuronal cells as well as in the control of constitutive secretory pathways in both yeast and mammalian cells. We show that RBL-2H3 cells, secretory cells of the immune system, endogenously express the 22-kDa NCS-1 protein as well as an immune-related 50-kDa protein. Both proteins associate in vivo with phosphatidylinositol 4-kinase beta (PI4Kbeta) and colocalize with the enzyme in the Golgi region. We show further that overexpression of NCS-1 in RBL-2H3 cells stimulates the catalytic activity of PI4Kbeta, increases IgE receptor (FcepsilonRI)-triggered hydrolysis of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)), and stimulates FcepsilonRI-triggered, but not Ca(2+) ionophore-triggered, exocytosis. Conversely, expression of a kinase-dead mutant of PI4Kbeta reduces PI4Kbeta activity, decreases FcepsilonRI-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis, and blocks FcepsilonRI-triggered, but not Ca(2+) ionophore-triggered, exocytosis. Our results indicate that PI(4)P, produced by the Golgi-localized PI4Kbeta, is the rate-limiting factor in the synthesis of the pool of PI(4,5)P(2) that serves as substrate for the generation of lipid-derived second messengers in FcepsilonRI-triggered cells. We conclude that NCS-1 is involved in the control of regulated exocytosis in nonneural cells, where it contributes to stimulus-secretion coupling by interacting with PI4Kbeta and positive regulation of its activity.  相似文献   

4.
ADP-ribosylation factors (ARFs) are ~20-kDa guanine nucleotide-binding proteins that are allosteric activators of the NAD:arginine ADP-ribosyltransferase activity of cholera toxin and appear to play a role in intracellular vesicular trafficking. Although the physiological roles of these proteins have not been defined, it has been presumed that each has a specific intracellular function. To obtain genetic evidence that each ARF is under evolutionary pressure to maintain its structure, and presumably function, rat ARF cDNA clones were isolated and their nucleotide and deduced amino acid sequences were compared to those of other mammalian ARFs. Deduced amino acid sequences for rat ARFs 1, 2, 3, 5 and 6 were identical to those of the known cognate human and bovine ARFs; rat ARF4 was 96% identical to human ARF4. Nucleotide sequences of both the untranslated as well as the coding regions were highly conserved. These results indicate that the ARF proteins are, as a family, extraordinarily well conserved across mammalian species. The unusually high degree of conservation of the untranslated regions is consistent with these regions having important regulatory roles and that individual ARFs contain structurally unique elements required for specific functions.  相似文献   

5.
We demonstrate that recycling through the endocytic recycling compartment (ERC) is an essential step in Fc epsilonRI-induced activation of extracellular signal-regulated kinase (ERK)1/2. We show that ERK1/2 acquires perinuclear localization and colocalizes with Rab 11 and internalized transferrin in Fc epsilonRI-activated cells. Moreover, a close correlation exists between the amount of ERC-localized ERK1/2 and the amount of phospho-ERK1/2 that resides in the nucleus. We further show that by activating phosphatidylinositol 4-kinase beta (PI4Kbeta) and increasing the cellular level of phosphatidylinositol(4) phosphate, neuronal calcium sensor-1 (NCS-1), a calmodulin-related protein, stimulates recycling and thereby enhances Fc epsilonRI-triggered activation and nuclear translocation of ERK1/2. Conversely, NCS-1 short hairpin RNA, a kinase dead (KD) mutant of PI4Kbeta (KD-PI4Kbeta), the pleckstrin homology (PH) domain of FAPP1 as well as RNA interference of synaptotagmin IX or monensin, which inhibit export from the ERC, abrogate Fc epsilonRI-induced activation of ERK1/2. Consistently, NCS-1 also enhances, whereas both KD-PI4Kbeta and FAPP1-PH domain inhibit, Fc epsilonRI-induced release of arachidonic acid/metabolites, a downstream target of ERK1/2 in mast cells. Together, our results demonstrate a novel role for NCS-1 and PI4Kbeta in regulating ERK1/2 signaling and inflammatory reactions in mast cells. Our results further identify the ERC as a crucial determinant in controlling ERK1/2 signaling.  相似文献   

6.
ADP-ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins that stimulate the ADP-ribosyltransferase activity of cholera toxin in vitro. ARFs are highly conserved, ubiquitously expressed in eukaryotic cells and appear to be involved in vesicular protein transport. The two yeast ARFs are > 60% identical to mammalian ARFs and are essential for cell viability (Stearns, T., Kahn, R. A., Botstein, D., and Hoyt, M. A. (1990) Mol. Cell. Biol. 10, 6690-6699). Although the two yeast ARF proteins are 96% identical in amino acid sequence, the yeast ARF1 gene is constitutively expressed, whereas the ARF2 gene is repressed by glucose. Human ARF5 and ARF6 and a Giardia ARF differ substantially in size and amino acid identity from other mammalian and eukaryotic ARFs but will, as befits their designation, activate cholera toxin. Expression of human ARF5, ARF6, or Giardia ARF cDNA rescued the lethal yeast ARF double mutant (arf1, arf2). Strains rescued by human ARF5, ARF6, or Giardia ARF grew much more slowly than wild-type yeast or strains rescued with yeast ARF1. We infer from the impaired growth of these rescued strains that the homologous ARFs may have specific targeting information that does not interact effectively or efficiently with the yeast protein membrane trafficking system.  相似文献   

7.
Several studies have shown that the neuronal calcium sensor (NCS-1) and phosphoinositol 4-kinase-beta (PI4K-beta) regulate the exocytotic process of nerve and neuroendocrine cells. The aim of our study was to investigate their possible interaction at rest and during stimulation in living cells and to decipher the role of this interaction in the secretory process. In PC12 cells, we observed a stimulation-induced recruitment of NCS-1 and PI4K-beta from the intracellular compartment toward the plasma membrane. This recruitment was highly correlated to the intracellular Ca(2+) rise induced by secretagogues. Using fluorescence resonance energy transfer between PI4K-beta-ECFP and NCS-1-EYFP, we show that both proteins are interacting in resting cells and that this interaction increases with stimulation. It appears that the membrane insertion of NCS-1 is necessary for the interaction with PI4K-beta, since a mutation that prevented the membrane insertion of NCS-1 abolished NCS-1-PI4K-beta interaction, as revealed by fluorescence resonance energy transfer analysis. Additionally, the overexpression of mutated NCS-1 prevents the stimulatory effect on secretion induced by PI4K-beta, suggesting that the interaction of the two proteins on a membrane compartment is necessary for the secretory function. Moreover, extinction of endogenous PI4K-beta by small interfering RNA inhibits secretion and completely prevents the stimulatory effect of NCS-1 on calcium-evoked exocytosis from permeabilized PC12 cells, showing directly for the first time the functional implication of a NCS-1.PI4K-beta complex in regulated exocytosis.  相似文献   

8.
Poliovirus infection results in the disintegration of intracellular membrane structures and formation of specific vesicles that serve as sites for replication of viral RNA. The mechanism of membrane rearrangement has not been clearly defined. Replication of poliovirus is sensitive to brefeldin A (BFA), a fungal metabolite known to prevent normal function of the ADP-ribosylation factor (ARF) family of small GTPases. During normal membrane trafficking in uninfected cells, ARFs are involved in vesicle formation from different intracellular sites through interaction with numerous regulatory and coat proteins as well as in regulation of phospholipase D activity and cytoskeleton modifications. We demonstrate here that ARFs 3 and 5, but not ARF6, are translocated to membranes in HeLa cell extracts that are engaged in translation of poliovirus RNA. The accumulation of ARFs on membranes correlates with active replication of poliovirus RNA in vitro, whereas ARF translocation to membranes does not occur in the presence of BFA. ARF translocation can be induced independently by synthesis of poliovirus 3A or 3CD proteins, and we describe mutations that abolished this activity. In infected HeLa cells, an ARF1-enhanced green fluorescent protein fusion redistributes from Golgi stacks to the perinuclear region, where poliovirus RNA replication occurs. Taken together, the data suggest an involvement of ARF in poliovirus RNA replication.  相似文献   

9.
Despite the 40-60% identity between ADP-ribosylation factors (ARFs) and ARF-like (ARL) proteins, distinct functional roles have been inferred from findings that ARLs lack the biochemical or genetic activities characteristic of ARFs. The potential for functional overlap between ARFs and ARLs was examined by comparing effects of expression on intact cells and the ability to bind effectors. Expression of [Q71L]ARL1 in mammalian cells led to altered Golgi structure similar to, but less dramatic than, that reported previously for [Q71L]ARF1. Two previously identified partners of ARFs, MKLP1 and Arfaptin2/POR1, also bind ARL1 but not ARL2 or ARL3. Two-hybrid screens of human cDNA libraries with dominant active mutants of human ARL1, ARL2, and ARL3 identified eight different but overlapping sets of binding partners. Specific interactions between ARL1 and two binding proteins, SCOCO and Golgin-245, are defined and characterized in more detail. Like ARFs and ARL1, the binding of SCOCO to Golgi membranes is rapidly reversed by brefeldin A, suggesting the presence of a brefeldin A-sensitive ARL1 exchange factor. These data reveal a complex network of interactions between GTPases in the ARF family and their effectors and reveal a potential for cross-talk not demonstrated previously.  相似文献   

10.
ADP-ribosylation factors (ARFs) are members of a multigene family of 20-kDa guanine nucleotide-binding proteins that ate regulatory components in several pathways of intracellular vesicular trafficking. The relatively small (~180-amino acids) ARF proteins interact with a variety of molecules (in addition to GTP/GDP, of course). Cholera toxin was the first to be recognized, hence the name. Later it was shown that ARF also activates phospholipase D. Different parts of the molecule are responsible for activation of the two enzymes. In vesicular trafficking, ARF must interact with coatomer to recruit it to a membrane and thereby initiate vesicle budding. ARF function requires that it alternate between GTP- and GDP-bound forms, which involves interaction with regulatory proteins. Inactivation of ARF-GTP depends on a GTPase-activating protein or GAP. A guanine nucleotide-exchange protein or GEP accelerates release of bound GDP from inactive ARF-GDP to permit GTP binding. Inhibition of GEP by brefeldin A (BFA) blocks ARF activation and thereby vesicular transport. In cells, it causes apparent disintegration of Golgi structure. Both BFA-sensitive and insensitive GEPs are known. Sequences of peptides from a BFA-sensitive GEP purified in our laboratory revealed the presence of a Sec7 domain, a sequence of ~200 amino acids that resembles a region in the yeast Sec7 gene product, which is involved in Golgi vesicular transport. Other proteins of unknown function also contain Sec7 domains, among them a lymphocyte protein called cytohesin-1. To determine whether it had GEP activity, recombinant cytohesin-1 was synthesized in E. coli. It preferentially activated class I ARFs 1 and 3 and was not inhibited by BFA but failed to activate ARF5 (class II). There are now five Sec7 domain proteins known to have GEP activity toward class I ARFs. It remains to be determined whether there are other Sec7 domain proteins that are GEPs for ARFs 4, 5, or 6.  相似文献   

11.
12.
Expression of NCS-1 (neuronal calcium sensor-1, also termed frequenin) in 3T3L1 adipocytes strongly inhibited insulin-stimulated translocation of GLUT4 and insulin-responsive aminopeptidase. The effect of NCS-1 was specific for GLUT4 and the insulin-responsive aminopeptidase translocation as there was no effect on the trafficking of the cation-independent mannose 6-phosphate receptor or the GLUT1 glucose transporter isoform. Moreover, NCS-1 showed partial colocalization with GLUT4-EGFP in the perinuclear region. The inhibitory action of NCS-1 was independent of calcium sequestration since neither treatment with ionomycin nor endothelin-1, both of which elevated the intracellular calcium concentration, restored insulin-stimulated GLUT4 translocation. Furthermore, NCS-1 did not alter the insulin-stimulated protein kinase B (PKB/Akt) phosphorylation or the recruitment of Cbl to the plasma membrane. In contrast, expression of the NCS-1 effector phosphatidylinositol 4-kinase (PI 4-kinase) inhibited insulin-stimulated GLUT4 translocation, whereas co-transfection with an inactive PI 4-kinase mutant prevented the NCS-1-induced inhibition. These data demonstrate that PI 4-kinase functions to negatively regulate GLUT4 translocation through its interaction with NCS-1.  相似文献   

13.
Cholera toxin exerts its effects on cells in large part through the ADP-ribosylation of guanine nucleotide-binding proteins. Toxin-catalyzed ADP-ribosylation is enhanced by approximately 20-kDa guanine nucleotide-binding proteins termed ADP-ribosylation factors (ARFs), which are allosteric activators of the toxin catalytic unit. Rabbit antiserum against a purified bovine brain ARF (sARF II) reacted on immunoblots with two approximately 20-kDa ARF-like proteins (sARF I and II) in tissue extracts from bovine, rat, frog, and chicken. Levels of ARF were higher in brain than in non-neural tissues. In rat brain, on the second postnatal day, amounts of sARF I and II were similar. By the 10th postnatal day and thereafter, sARF II predominated. Relative levels of ARF determined by immunoreactivity were in agreement with levels assessed in functional assays of cholera toxin-catalyzed ADP-ribosylation. Based on nucleotide and deduced amino acid sequences of human and bovine cDNAs, there appear to be at least six different ARF-like genes. Northern blots of rat brain poly(A)+ RNA were hybridized with cDNA and oligonucleotide probes specific for each of the human and bovine ARF genes. From the second to the 27th postnatal day, ARF 3 mRNA increased, whereas mRNAs for ARFs 2 and 4 decreased; and those for ARFs 1, 5, and 6 were apparently unchanged. Partial amino acid sequence of sARF II is consistent with it being either the ARF 1 or 3 gene product. The developmental changes in rat brain ARF parallel neuronal maturation and synapse formation.  相似文献   

14.
ADP-ribosylation factors (ARFs) play important roles in both constitutive and regulated membrane trafficking to the plasma membrane in other cells. Here we have examined their role in insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. These cells express ARF5 and ARF6. ARF5 was identified in the soluble protein and intracellular membranes; in response to insulin some ARF5 was observed to re-locate to the plasma membrane. In contrast, ARF6 was predominantly localized to the plasma membrane and did not redistribute in response to insulin. We employed myristoylated peptides corresponding to the NH2 termini of ARF5 and ARF6 to investigate the function of these proteins. Myr-ARF6 peptide inhibited insulin-stimulated glucose transport and GLUT4 translocation by approximately 50% in permeabilized adipocytes. In contrast, myr-ARF1 and myr-ARF5 peptides were without effect. Myr-ARF5 peptide also inhibited the insulin stimulated increase in cell surface levels of GLUT1 and transferrin receptors. Myr-ARF6 peptide significantly decreased cell surface levels of these proteins in both basal and insulin-stimulated states, but did not inhibit the fold increase in response to insulin. These data suggest an important role for ARF6 in regulating cell surface levels of GLUT4 in adipocytes, and argue for a role for both ARF5 and ARF6 in the regulation of membrane trafficking to the plasma membrane.  相似文献   

15.
16.
We have cloned the cDNA encoding human PICK1 (protein interacting with C kinase 1), a PDZ domain-containing protein of 415 amino acids, and also identified the Drosophila homologue by search of the databank. Northern blot analysis shows a single mRNA of about 2.0 kb ubiquitously expressed in human tissues. Although PICK1 proteins harbor a region homologous to arfaptin1 and arfaptin2, two proteins that bind to the ARF (ADP-ribosylation factor), this region of PICK1 does not interact with ARFs in the yeast two-hybrid system. On the other hand, the PDZ domain of PICK1 is capable of interacting with constitutively active, GTP-bound forms of ARF1 and ARF3, but neither with those of ARF5/6 nor with the GDP-bound ARFs. The PICK1-ARF interaction is abrogated by introduction of mutations in the PDZ domain or by deletion of the extreme C-terminus of ARF1. Thus, PICK1 specifically interacts with ARF1/3 in the GTP-bound state, suggesting that PICK1 participates in ARF1/3-mediated cellular processes.  相似文献   

17.
ADP-ribosylation factors (ARFs) are small Ras-like GTPases which play important roles in intracellular vesicle transport and in the remodeling of the actin cytoskeleton. Guanine nucleotide exchange factors (GEFs) for ARFs have recently been identified. One of them, cytohesin-1, a 47-kDa cytoplasmic protein acts as an inside-out signaling molecule and regulates binding of the beta2 integrin leukocyte function antigen 1 (LFA-1) to its ligand intercellular adhesion molecule 1 (ICAM-1). In this study, we address the regulation of the GEF activity of cytohesin-1 by phosphoinositides, using mammalian expression of functional ARF-Ig chimeras. The fusion proteins, which can be quantitatively immunoprecipitated on protein A-Sepharose, target to the expected intracellular compartments, and they are readily induced to bind GTP in vitro. We show that both ARF1-Ig and ARF6-Ig chimeras are activated in vitro by cytohesin-1. However, GEF activity towards ARF6 is strongly suppressed by phosphatidylinositol-(3,4,5)-trisphosphate (PtdInsP3). In contrast, cytohesin-1-dependent GTP binding of ARF1 is significantly enhanced by PtdInsP3. We conclude that the membrane phospholipid PtdInsP3 determines the specificity of the GEF activity of cytohesin-1.  相似文献   

18.
Frequenin, a member of a large family of myristoyl-switch calcium-binding proteins, functions as a calcium-ion sensor to modulate synaptic activity and secretion. We show that human frequenin colocalizes with ARF1 GTPase in COS-7 cells and occurs in similar cellular compartments as the phosphatidylinositol-4-OH kinase PI4Kbeta, the mammalian homolog of the yeast kinase PIK1. In addition, the crystal structure of unmyristoylated, calcium-bound human frequenin has been determined and refined to 1.9 A resolution. The overall fold of frequenin resembles those of neurocalcin and the photoreceptor, recoverin, of the same family, with two pairs of calcium-binding EF hands and three bound calcium ions. Despite the similarities, however, frequenin displays significant structural differences. A large conformational shift of the C-terminal region creates a wide hydrophobic crevice at the surface of frequenin. This crevice, which is unique to frequenin and distinct from the myristoyl-binding box of recoverin, may accommodate a yet unknown protein ligand.  相似文献   

19.
Yeast two-hybrid screening of a human kidney cDNA library using the GTP-bound form of a class II ADP-ribosylation factor (ARF5) identified a novel ARF5-binding protein with a calculated molecular mass of 82.4 kDa, which was named arfophilin. Northern hybridization analysis showed high level arfophilin mRNA expression in human heart and skeletal muscle. Arfophilin bound only to the active, GTP-bound form of ARF5 and did not bind to GTP-ARF3, which is a class I ARF. The N terminus of ARF5 (1-17 amino acids) was essential for binding to arfophilin. The GTP-bound form of ARF5 with amino acid residues in the N terminus mutated to those in ARF4 (another class II ARF) also bound to arfophilin, suggesting it is a target protein for GTP-bound forms of class II ARFs. The binding site for ARF on arfophilin was localized to the C terminus (residues 612-756), which contains putative coiled-coil structures. Recombinant arfophilin overexpressed in CHO-K1 cells was localized in the cytosol and translocated to a membrane fraction in association with GTP-bound ARF5. ARF5 containing the N terminus of ARF3 did not promote translocation indicating that class II ARFs are specific carriers for arfophilin.  相似文献   

20.
ADP-ribosylation factors (ARFs) are highly conserved approximately 20-kDa guanine nucleotide-binding proteins that were first identified based on their ability to stimulate the cholera toxin-catalyzed ADP-ribosylation of Gs alpha and thus activate adenylyl cyclase. Proteins with ARF activity have been characterized from different mammalian tissues and exhibited different requirements for activity, stability, and phospholipid. Based on molecular cloning and mRNA distribution, at least six mammalian ARFs, which fall into three classes, have been identified. To test whether individual ARFs might have different requirements for optimal activity, as judged by their ability to enhance cholera toxin ADP-ribosyltransferase activity, four ARFs from classes I, II, and III were produced as recombinant proteins in Escherichia coli and characterized. Recombinant bovine ARF 2 (rARF 2) and human ARF 3 (rARF 3) (class I), human ARF 5 (rARF 5, class II), and human ARF 6 (rARF 6, class III) differed in the effects of phospholipid and detergent on their ability to enhance cholera toxin activity; rARFs 2, 3, and 5 required dimyristoylphosphatidylcholine (DMPC) and cholate, whereas rARF 6 did not require phospholipid/detergent for activity. Further characterization of two of the more divergent ARFs (ARFs 2 and 6) showed that both exhibited guanosine 5'-O-(3-thio)triphosphate binding which was enhanced by DMPC/cholate. In the transferase assay, rARF 2 required approximately 4 microM GTP for half-maximal stimulation of toxin activity, whereas rARF 6 required 0.05 microM GTP. rARF 6 exhibited a delay in activation of toxin not detected with rARF 2 that may be related to a requirement for guanine nucleotide exchange and/or GTP binding. These findings are consistent with the conclusion that the highly conserved members of the ARF family have different requirements for optimal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号