首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to develop a simple and rapid method for purification of ultrapure supercoiled plasmid DNA with high yields from bacterial cultures. Nanosized superparamagnetic nanoparticles (Fe3O4) were prepared by chemical precipitation method using Fe2+, Fe3+ salt, and ammonium hydroxide under a nitrogen atmosphere. The surface of Fe3O4 nanoparticles was modified by coating with the multivalent cationic agent, polyethylenimine (PEI). The nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier transformation infrared spectroscopy and superconducting quantum interference device magnetometer. The PEI-modified magnetic nanobeads were employed to simplify the purification of plasmid DNA from bacterial cells. We demonstrated a useful plasmid, pRSETB-EGFP, encoding the green fluorescent protein with T7 promoter, was amplified in DE3 strain of Escherichia coli. The loaded nanobeads are recovered by magnetically driven separation and regenerated by exposure to the elution buffer with optimal ionic strength (1.25 M) and pH (9.0). Up to approximately 35 microg of high-purity (A260/A280 ratio=1.87) plasmid DNA was isolated from 3ml of overnight bacterial culture. EGFP expression was detected by fluorescent microscopy in the transformed E. coli cells, indicating the biological activities of DNA fragments were retained after purified from magnetic nanobeads. The protocol, starting from the preparation of bacterial lysate and ending with purified plasmids takes less than 10 min. Thus, the separation and purification qualities of PEI-modified magnetic nanobeads as well as its ease of use surpass those of conventional anion-exchange resins.  相似文献   

2.
A system for streptavidin detection using biotin conjugated to nano-sized bacterial magnetic particles (BMPs) has been developed. BMPs, isolated from magnetic bacteria, were used as magnetic markers for magnetic force microscopy (MFM) imaging. The magnetic signal was obtained from a single particle using MFM without application of an external magnetic field. The number of biotin conjugated BMPs (biotin-BMPs) bound to streptavidin immobilized on the glass slides increased with streptavidin concentrations up to 100 pg/ml. The minimum streptavidin detection limit using this technique is 1 pg/ml, which is 100 times more sensitive than a conventional fluorescent detection system. This is the first report using single domain nano-sized magnetic particles as magnetic markers for biosensing. This assay system can be used for immunoassay and DNA detection with high sensitivities.  相似文献   

3.
This tutorial describes a method of controlled cell labeling with citrate-coated ultra small superparamagnetic iron oxide nanoparticles. This method may provide basically all kinds of cells with sufficient magnetization to allow cell detection by high-resolution magnetic resonance imaging (MRI) and to enable potential magnetic manipulation. In order to efficiently exploit labeled cells, quantify the magnetic load and deliver or follow-up magnetic cells, we herein describe the main requirements that should be applied during the labeling procedure. Moreover we present some recommendations for cell detection and quantification by MRI and detail magnetic guiding on some real-case studies in vitro and in vivo.  相似文献   

4.
Cao QE  Zhao Y  Xu Y  Li C  Hu Z  Xu Q 《Analytical biochemistry》2000,277(2):214-220
Based on the enhancement of the fluorescence intensity of the complex of 5-(3-fluoro-4-chlorophenylazo)-8-sulfonamidoquinoline (FCPBSQ) with Co(2+) by nucleic acid in the presence of Tween 80 and in the weakly basic medium, a fluorescence method for the determination of nucleic acid was proposed. The calibration graphs for the determination of denatured calf thymus DNA (ct DNA), fish sperm DNA (fs DNA), and yeast RNA (yt RNA) were obtained in concentration ranges 0.050-4.0, 0.10-3.0, and 0.050-3.0 microg/ml with limits of detection of 0.010, 0.030, and 0.020 microg/ml, respectively. The method has been satisfactorily used for the determination of DNA in wheat cell extraction and ct DNA, fs DNA, and yt RNA in synthetic samples. Investigations on the binding mode by the Scatchard plots method suggested that both intercalation and electrostatic binding modes existed in this system.  相似文献   

5.
A method for rapid sensitive detection of DNA or RNA was designed using a composite screen-printed carbon electrode modified with multi-walled carbon nanotubes (MWNTs). MWNTs showed catalytic characteristics for the direct electrochemical oxidation of guanine or adenine residues of signal strand DNA (ssDNA) and adenine residues of RNA, leading to indicator-free detection of ssDNA and RNA concentrations. With an accumulation time of 5 min, the proposed method could be used for detection of calf thymus ssDNA ranging from 17.0 to 345 microg ml(-1) with a detection limit of 2.0 microg ml(-1) at 3 sigma and yeast tRNA ranging from 8.2 microg ml(-1) to 4.1 mg ml(-1). AC impedance was employed to characterize the surface of modified electrodes. The advantages of convenient fabrication, low-cost detection, short analysis time and combination with nanotechnology for increasing the sensitivity made the subject worthy of special emphasis in the research programs and sources of new commercial products.  相似文献   

6.
Kaittanis C  Nath S  Perez JM 《PloS one》2008,3(9):e3253
Considering the increased incidence of bacterial infections and the emergence of multidrug resistant bacteria at the global level, we designed superparamagnetic iron oxide nanoparticles as nanosensors for the assessment of antimicrobial susceptibility through magnetic relaxation. In this report, we demonstrate that iron oxide nanosensors, either dextran-coated supplemented with Con A or silica-coated conjugated directly to Con A, can be used for the fast (1) quantification of polysaccharides, (2) assessment of metabolic activity and (3) determination of antimicrobial susceptibility in blood. The use of these polysaccharide nanosensors in the determination of antimicrobial susceptibility in the clinic or the field, and the utilization of these nanoprobes in pharmaceutical R&D are anticipated.  相似文献   

7.
Based on the interaction between nucleic acids and tetraphenyl porphyrinatoiron chloride (FeTPPCl), a novel method for the determination of nucleic acids at the nanogram level has been developed. Under the optimum conditions, the weak resonance light scattering (RLS) intensity of FeTPPCl was greatly enhanced by nucleic acids and the enhanced RLS intensity was proportional to the concentration of nucleic acids in the range 0.02-2.8 microg/mL for calf thymus DNA, 0.05-3.3 microg/mL for fish sperm DNA and 0.07-4.5 microg/mL for yeast RNA. The detection limits (3sigma) were 2.9 ng/mL for calf thymus DNA, 3.9 ng/mL for fish sperm DNA and 5.2 ng/mL for yeast RNA. Almost no interference could be observed from proteins, nucleosides and most of the metal ions. The proposed method showed good reliability, sensitivity, rapidity and reproducibility when applied to the determination of nucleic acids in synthetic and biochemical samples. The time savings make this method suitable for large routine analyses.  相似文献   

8.
In order to develop facile, fast and sensitive detection methods for endocrine-disrupting chemicals (EDCs), we described a sensitive biosensing system involving magnetic relaxation switch, based on the assembly of cross-linked superparamagnetic iron oxide (CLIO) nanoparticles induced by the antigen-antibody biorecognition. The design of smart CLIO-based superparamagnetic iron oxide nanoparticles and antigen-OVA was described for the detection of bisphenol A [2,2-bis (4-hydroxyphenol) propane (BPA)]. The addition of BPA to the rapid magnetic relaxation switch immunosensor led to transverse relaxation time (T2) shortening compared to a blank control as shown by NMR relaxometry measurements. This process was also applied to the rapid and facile determination of concentrations of BPA in drinking water (tap water). Good linearity for all calibration curves was obtained, and the limit of detection (LOD) for BPA was 0.4 ng/mL in tap water.  相似文献   

9.
The c-reactive protein (CRP) is a very significant human blood marker for inflammatory processes and is routinely determined for many clinical purposes. The widespread and well established detection method for this approximately 115 kDa hepatic protein is the high-sensitivity ELISA assay (hsCRP-ELISA) in blood serum. New approaches in medical CRP diagnosis (e.g. for CVD, inflammatory bowel disease) require rapid quantification in native matrices. A novel CRP determination method based on magnetic detection is described and tested for human blood serum, saliva and urine. The detection principle is based on two different anti-CRP antibodies (monoclonal, IgG) for CRP trapment and labelling. The linear detection range of this immunosensor ranged from 25 ng/ml to 2.5 microg/ml and is therefore much more sensitive than typical hsCRP-ELISA-assays.  相似文献   

10.
The physical properties of non-viral vector/DNA nanoparticles in physiological aqueous solution are poorly understood. A Fluid Particle Image Analyser (FPIA), normally used for analysis of industrial and environmental fluids, was used to visualise individual (Lys)(16)-containing peptide/DNA particles. Eight (Lys)(16)-containing synthetic peptides were used to generate peptide/DNA particles at a constant + to - charge ratio of 2.8:1 with 10 microg/ml of plasmid DNA in phosphate buffered saline. Dynamic Light Scattering (DLS) and gene delivery studies were also performed. We present the first images of non-viral vector/DNA nanoparticles in physiological aqueous solution, together with precise measurements of individual particle size and shape in solution and, for the first time, an accurate measure of particle number. Particle size and shape, particle number, and efficiency for gene delivery varied markedly with different peptides. Under standard conditions for in vitro gene delivery, we estimate approximately 60 peptide/DNA nanoparticles per target cell, each containing approximately 70,000 plasmids. This novel capacity to image individual vector/DNA nanoparticles in solution and to count them accurately will enable a more precise assessment of non-viral gene delivery systems, and a more quantitative interpretation of gene delivery experiments.  相似文献   

11.
In this paper, a novel fluorescent probe 2-methylbenzo[b][1,10] phenanthrolin-7(12H)-one (m-BPO) is synthesized, and its molecular structure has been characterized by IR, UV, MS, (1)H-NMR and elements analysis. The fluorescent characteristics of m-BPO were investigated in detail. It was found that DNA had the ability to quench the fluorescence of m-BPO at 411 nm (lambda(ex)=286 nm), and the quenched intensity of fluorescence was proportional to the concentration of DNA. Based on this fact, m-BPO has been used as the fluorescent probe for detection of calf thymus DNA (ctDNA) and fish semen DNA (fsDNA). Under the optimal conditions, the calibration curves are linear up to 15.0 microg/ml for both ctDNA and fsDNA. The corresponding detection limits are 3.6 ng/ml for ctDNA and 5.5 ng/ml for fsDNA, respectively. The interaction mechanism for the binding of m-BPO to ctDNA was studied in detail, and the results suggested that the interaction mode between m-BPO and ctDNA was groove binding.  相似文献   

12.
The thermodynamics of formation of a novel divalent metal ion-DNA complex known as M-DNA have been investigated using an ethidium bromide (EB) fluorescence assay, and with isothermal titration calorimetry. The process of M-DNA formation was observed from the EB assay to be strongly temperature-dependent. The binding of Zn(2+) to calf thymus (42% GC content) and Escherichia coli (50% GC content) DNA at pH 8.5 exhibited an endothermic cooperative binding process at Zn(2+) concentrations of approximately 0.1 mM, indicating an entropy driven process. This binding process is consistent with a site-specific binding interaction, similar in nature to Z-DNA formation; however, the interaction occurs at much lower metal ion concentrations. The enthalpy of M-DNA formation for calf thymus DNA was determined to be 10.5+/-0.7 and 9+/-2 kJ/mbp at DNA concentrations of 100 and 50 microg ml(-1), respectively. An enthalpy of 13+/-3 kJ/mbp was obtained for M-DNA formation for 50 microg ml(-1) E. coli DNA. No evidence of M-DNA formation was observed in either DNA at pH 7.5 with Zn(2+) or at either pH 7.5 or 8.5 with Mg(2+).  相似文献   

13.
For the purpose of successfully monitoring labeled cells, optimum labeling efficiency without any side effect is a prerequisite. Magnetic cellular imaging is a new and growing field that allows the visualization of implanted cells in vivo. Herein, superparamagnetic iron oxide (SPIO) nanoparticles were conjugated with a non-toxic protein transduction domain (PTD), identified by the authors and termed low molecular weight protamine (LMWP), to generate efficient and non-toxic cell labeling tools. The cells labeled with LMWP-SPIO presented the highest iron content compared to those labeled with naked SPIO and the complex of SPIO with poly-l-lysine, which is currently used as a transfection agent. In addition to the iron content assay, Prussian staining and confocal observation demonstrated the highest intracellular LMWP-SPIO presence, and the labeling procedure did not alter the cell differentiation capacity of mesenchymal stem cells. Taken together, cell permeable magnetic nanoparticles conjugated with LMWP can be suggested as labeling tools for efficient magnetic imaging of transplanted cells.  相似文献   

14.
The adsorption and electrooxidation of nucleic acids on glassy carbon electrodes are evaluated by using chronopotentiometric stripping analysis. The influence of electrochemical pretreatments, supporting electrolyte, halides and monovalent cations levels as well as the role of the oligonucleotide length and composition, accumulation potential and time on the adsorption and further electrooxidation of oligo(dG)(11) and oligo(dG)(21) are discussed. The adsorption behavior of single and double stranded calf thymus DNA on untreated glassy carbon electrodes is also evaluated. Trace (microg/l) levels of the oligonucleotides and polynucleotides can be readily detected following short accumulation periods with detection limits of 25, 60, 126 and 219 microg/l for oligo(dG)(21), oligo(dG)(11), ss and ds calf thymus DNA, respectively. The confined DNA layers demonstrated to be stable in air, in 0.200 M acetate buffer pH 5.00 and in 0.020 M phosphate buffer pH 7.40+0.50 M NaCl.  相似文献   

15.
Phosphopeptides (PPs) isolated from highly purified calf thymus DNA (N-DNA) and extracted from calf thymus nuclei were fractionated, and the effect of one PP fraction on DNA replication has been examined. In the absence of inhibitors, the increasing PP concentration caused a linear decrease of 3H-thymidine uptake in L5178Y cells. If PP fraction was mildly hydrolysed with 1NHCl, the decrease in uptake was much steeper. The studies in which the inhibitors were used revealed that by the addition of the unhydrolysed PP fraction the inhibition of 3H-thymidine uptake by alpha-amanitin could be completely overcome, and that the inhibition by puromycin was reduced to 65-77% of the control. With puromycin, there was a gradual decrease of 3H-thymidine uptake with PP concentration above 3 mg/ml. The PPs gave an increase in incorporation of 3H-thymidine even after removal of alpha-amanitin and puromycin; thus, it is suggested that there is no direct interaction of either inhibitor with PP in the cell. Data on the utilization of 3H-cytidine for the synthesise of new DNA suggest that PP fraction might cause an acceleration of DNA replication.  相似文献   

16.
We prepared stable homogeneous suspensions with layered double hydroxide (LDH) nanoparticles for in vitro gene delivery tests. The viability of HEK 293T cells in the presence of LDH nanoparticles at different concentrations was investigated. This revealed 50% cell viability at 500 microg/mL of LDH nanoparticles that is much higher than 50-100 microg/mL used for the delivery tests. The supercoiled pEF-eGFP plasmid (ca. 6100 base pairs) was mixed with LDH nanoparticle suspensions for anion exchange at a weight ratio of DNA/LDH between 1:25 and 1:100. In vitro experiments show that GFP expression in HEK 293T cells starts in the first day, reaches the maximum levels by the second day and continues in the third day. The GFP expression generally increases with the increase in DNA loading in DNA-LDH nanohybrids. However, the delivery efficiency with LDH nanoparticles as the agent is low. For example, the relative efficiency is 7%-15% of that of the commercial agent FuGENE 6. Three to 6% of total cells expressed GFP in an amount detectable by the FACS cytometry 2 days after transfection at 1 microg/mL of plasmid DNA with 25 microg/mL of LDH nanomaterial. The lower delivery efficiency could be attributed to the aggregation of LDH nanoparticles caused by the long-chain plasmid DNA.  相似文献   

17.
A single bond covalent immobilization of aminated DNA probes on magnetic particles suitable for selective molecular hybridization of traces of DNA samples has been developed. Commercial superparamagnetic nanoparticles containing amino groups were activated by coating with a hetero-functional polymer (aldehyde-aspartic-dextran). This new immobilization procedure provides many practical advantages: (a) DNA probes are immobilized far from the support surface preventing steric hindrances; (b) the surface of the nanoparticles cannot adsorb DNA ionically; (c) DNA probes are bound via a very strong covalent bond (a secondary amine) providing very stable immobilized probes (at 100 degrees C, or in 70% formamide, or 0.1N NaOH). Due to the extreme sensitivity of this purification procedure based on DNA hybridization, the detection of hybridized products could be coupled to a PCR-ELISA direct amplification of the DNA bond to the magnetic nanoparticles. As a model system, an aminated DNA probe specific for detecting Hepatitis C Virus cDNA was immobilized according to the optimised procedure described herein. Superparamagnetic nanoparticles containing the immobilized HCV probe were able to give a positive result after PCR-ELISA detection when hybridized with 1 mL of solution containing 10(-18) g/mL of HCV cDNA (two molecules of HCV cDNA). In addition, the detection of HCV cDNA was not impaired by the addition to the sample solution of 2.5 million-fold excess of non-complementary DNA. The experimental data supports the use of magnetic nanoparticles containing DNA probes immobilized by the procedure here described as a convenient and extremely sensitive procedure for purification/detection DNA/RNA from biological samples. The concentration/purification potential of the magnetic nanoparticles, its stability under a wide range of conditions, coupled to the possibility of using the particles directly in amplification by PCR greatly reinforces this methodology as a molecular diagnostic tool.  相似文献   

18.
8-Hydroxy-2′-deoxyguanosine (8-OHdG) and 5-methyl-2′-deoxycytidine (5-mdC) are utilized as useful biomarkers not only for early diagnosis but also for the detection and assessment of high-risk individuals. In the present study, a sensitive and specific method was developed for simultaneous determination of 8-OHdG and 5-mdC in DNA by high performance liquid chromatography/positive electrospray ionization tandem mass spectrometry. The limits of quantification for 8-OHdG and 5-mdC were 80 and 40 pg/ml, respectively. The calibration curves of 8-OHdG and 5-mdC were linear over the concentration range of 0.02–100 ng/ml and the correlation coefficients were higher than 0.9990. The intra-day and inter-day relative standard derivative values were in the range of 0.70–7.47% for 8-OHdG and 1.07–7.06% for 5-mdC, respectively. The recoveries were 93.4–108.5% for 8-OHdG and 87.4–104.9% for 5-mdC, respectively. This method was validated by determination of the background levels of 8-OHdG and 5-mdC in calf thymus DNA, and satisfactory results were obtained.  相似文献   

19.
The early detection and eradication of circulating tumor cells (CTCs) play an important role in cancer metastasis management. This paper describes a new nanoparticle-enabled technique for integrated enrichment, detection and killing of CTCs by using magnetic nanoparticles and bismuth nanoparticles, X-ray fluorescence spectrometry, and X-ray radiation. The nanoparticles are modified with tumor targeting agents and conjugated with tumor cells through folate receptors over-expressed on cancer cells. A permanent micro-magnet is used to collect CTCs suspended inside a flowing medium that contains phosphate buffered saline (PBS) or whole blood. The characteristic X-ray emissions from collected bismuth nanoparticles, upon excitation with collimated X-rays, are used to detect CTCs. Results show that the method is capable of selectively detecting CTCs at concentrations ranging from 100-100,000cells/mL in the buffer solution, with a detection limit of ~100CTCs/mL. Moreover, the dose of primary X-rays can be enhanced to kill the localized CTCs by radiation induced DNA damage, with minimal invasiveness, thus making in vivo personalized CTC management possible.  相似文献   

20.
A dot-blot method for quantification of apurinic/apyrimidinic (AP) sites in genomic DNA (calf thymus DNA) is described using an avidin-modified glass slip and biotinylated liposomes containing sulforhodamine B as a fluorescence marker. Aldehyde reactive probe (ARP)-tagged DNA was found to be strongly adsorbed on an avidin slip, even if treated with ethanolamine and biotin, with an efficiency of 51% due to the positive surface charge of avidin, and unbound ARP was easily washed out of the surface with Milli-Q water. In the assay protocol, calf thymus DNA containing AP sites is reacted with ARP in solution and immobilized on an ethanolamine- and biotin-treated avidin slip (EAB-avidin slip), followed by incubation with streptavidin. The AP sites were finally quantified with biotinylated liposomes containing 1.5 mM sulforhodamine B as a fluorescence marker. The mean fluorescence intensity over the surface of the slip was an analytically relevant measure of the amount of AP sites in calf thymus DNA. By using the dot-blot assay, 1-5 AP sites per 10(4) nucleotides in 5 and 100 ng of DNA were quantified. The current dot-blot method has potential for quantification of AP sites in genomic DNA at a level of several nanograms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号