首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The directionality of electron transfer in Photosystem I (PS I) is investigated using site-directed mutations in the phylloquinone (QK) and FX binding regions of Synnechocystis sp. PCC 6803. The kinetics of forward electron transfer from the secondary acceptor A1 (phylloquinone) were measured in mutants using time-resolved optical difference spectroscopy and transient EPR spectroscopy. In whole cells and PS I complexes of the wild-type both techniques reveal a major, slow kinetic component of tau approximately 300 ns while optical data resolve an additional minor kinetic component of tau approximately 10 ns. Whole cells and PS I complexes from the W697FPsaA and S692CPsaA mutants show a significant slowing of the slow kinetic component, whereas the W677FPsaB and S672CPsaB mutants show a less significant slowing of the fast kinetic component. Transient EPR measurements at 260 K show that the slow phase is approximately 3 times slower than at room temperature. Simulations of the early time behavior of the spin polarization pattern of P700+A1-, in which the decay rate of the pattern is assumed to be negligibly small, reproduce the observed EPR spectra at 260 K during the first 100 ns following laser excitation. Thus any spin polarization from P700+FX- in this time window is very weak. From this it is concluded that the relative amplitude of the fast phase is negligible at 260 K or its rate is much less temperature-dependent than that of the slow component. Together, the results demonstrate that the slow kinetic phase results from electron transfer from QK-A to FX and that this accounts for at least 70% of the electrons. Although the assignment of the fast kinetic phase remains uncertain, it is not strongly temperature dependent and it represents a minor fraction of the electrons being transferred. All of the results point toward asymmetry in electron transfer, and indicate that forward transfer in cyanobacterial PS I is predominantly along the PsaA branch.  相似文献   

2.
By using the direct electrometric technique, the flash-induced generation of the difference in electrical potentials in hybrid proteoliposomes containing photosystem 1 and cytochrome bf complexes from cyanobacteria Synechocystis sp. PCC 6803 was studied. It was shown that the primary donor P700 in photosystem I and cytochrome f are predominantly localized near the outer surface of the proteoliposomal membrane, which made it possible to study for the first time electrogenic reactions of cytochrome bf complexes in a model system. In the presence of decyl plastoquinol and cytochrome c6, besides the fast electrogenic phase determined by the separation of charges in photosystem I, additional electrogenic phases in the submillisecond and millisecond ranges were observed. These phases were partially depressed in the presence of the inhibitor of the plastoquinone reductase site NQNO and fully disappeared after the addition of the inhibitor of the plastoquinol oxidase site stigmatellin. A possible mechanism of the electrogenic reactions in cytochrome bf complexes was considered.  相似文献   

3.
The electron transfer from wild-type spinach plastocyanin (Pc) to photosystem 1 has been studied by flash-induced absorption changes at 830 nm. The decay kinetics of photo-oxidized P700 are drastically slower in the presence of Ag(I)-substituted Pc, while addition of Zn(II)-substituted Pc has a weaker effect. The metal-substituted forms of Pc act as competitive inhibitors of the reaction between normal, Cu-containing, Pc and P700. The inhibition constants obtained from an analysis of the kinetic data were 30 and 410 muM for Ag(I)- and Zn(II)-substituted Pc, respectively. When the Gly8Asp mutant form of Pc was used instead of the wild-type form, the corresponding values were found to be 77 and 442 muM. If the Ag- and Zn-derivatives can be considered as structural mimics of reduced and oxidized CuPc, respectively, our results imply that there is a redox-induced decrease in the affinity between Pc and photosystem 1 that follows the electron donation to P700. Our data also imply that the Gly8Asp mutation can diminish the magnitude of this change. The findings reported here are consistent with a reaction mechanism where the electron transfer in the complex between Pc and photosystem 1 is assumed to be reversible.  相似文献   

4.
Hanna Jansson 《BBA》2008,1777(9):1116-1121
The electron transfer from wild-type spinach plastocyanin (Pc) to photosystem 1 has been studied by flash-induced absorption changes at 830 nm. The decay kinetics of photo-oxidized P700 are drastically slower in the presence of Ag(I)-substituted Pc, while addition of Zn(II)-substituted Pc has a weaker effect. The metal-substituted forms of Pc act as competitive inhibitors of the reaction between normal, Cu-containing, Pc and P700. The inhibition constants obtained from an analysis of the kinetic data were 30 and 410 μM for Ag(I)- and Zn(II)-substituted Pc, respectively. When the Gly8Asp mutant form of Pc was used instead of the wild-type form, the corresponding values were found to be 77 and 442 μM. If the Ag- and Zn-derivatives can be considered as structural mimics of reduced and oxidized CuPc, respectively, our results imply that there is a redox-induced decrease in the affinity between Pc and photosystem 1 that follows the electron donation to P700. Our data also imply that the Gly8Asp mutation can diminish the magnitude of this change. The findings reported here are consistent with a reaction mechanism where the electron transfer in the complex between Pc and photosystem 1 is assumed to be reversible.  相似文献   

5.
The photosystem (PS) I photosynthetic reaction center was modified thorough the selective extraction and exchange of chlorophylls and quinones. Extraction of lyophilized photosystem I complex with diethyl ether depleted more than 90% chlorophyll (Chl) molecules bound to the complex, preserving the photochemical electron transfer activity from the primary electron donor P700 to the acceptor chlorophyll A(0). The treatment extracted all the carotenoids and the secondary acceptor phylloquinone (A(1)), and produced a PS I reaction center that contains nine molecules of Chls including P700 and A(0), and three Fe-S clusters (F(X), F(A) and F(B)). The ether-extracted PS I complex showed fast electron transfer from P700 to A(0) as it is, and to FeS clusters if phylloquinone or an appropriate artificial quinone was reconstituted as A(1). The ether-extracted PS I enabled accurate detection of the primary photoreactions with little disturbance from the absorbance changes of the bulk pigments. The quinone reconstitution created the new reactions between the artificial cofactors and the intrinsic components with altered energy gaps. We review the studies done in the ether-extracted PS I complex including chlorophyll forms of the core moiety of PS I, fluorescence of P700, reaction rate between A(0) and reconstituted A(1), and the fast electron transfer from P700 to A(0). Natural exchange of chlorophyll a to 710-740 nm absorbing chlorophyll d in PS I of the newly found cyanobacteria-like organism Acaryochloris marina was also reviewed. Based on the results of exchange studies in different systems, designs of photosynthetic reaction centers are discussed.  相似文献   

6.
Plastocyanin (Pc) and cytochrome c6 (Cyt) have been purified to homogeneity from the cyanobacterium Pseudanabaena sp. PCC 6903, which occupies a unique divergent branch in the evolutionary tree of oxygen-evolving photosynthetic organisms. The two metalloproteins have similar molecular masses (9–10 kDa), as well as almost identical isoelectric points (ca. 8) and midpoint redox potentials (ca. 350 mV, at pH 7). Their reaction mechanism of electron transfer to Photosystem I (PS I) has been analyzed by laser-flash absorption spectroscopy. The kinetic traces with Pc correspond to monophasic kinetics, whereas those with Cyt are better fitted to biphasic curves. The observed pseudo first-order rate constant (kobs) with Pc and that for the slower phase with Cyt exhibit saturation profiles at increasing donor protein concentrations, thereby suggesting that the two metalloproteins are able to form transient complexes with PS I. The ionic strength dependence of the rate constants for complex formation makes evident the electrostatic nature of intermediate complexes. The experimental findings indicate that the PS I reduction kinetics in Pseudanabaena follow a type II mechanism with Pc and a type III mechanism with Cyt, according to the different kinetic models proposed previously [(Hervás M, Navarro JA, Díaz A, Bottin H and De la Rosa MA (1995) Biochemistry 34: 11321–11326)]. From an evolutionary point of view, this reinforces our previous observation that PS I was first adapted to operate efficiently with positively charged Cyt rather than with Pc.  相似文献   

7.
The PsaC subunit of photosystem I (PS I) binds two [4Fe-4S] clusters, F(A) and F(B), functioning as electron carriers between F(X) and soluble ferredoxin. To resolve the issue whether F(A) or F(B) is proximal to F(X), we used single-turnover flashes to promote step-by-step electron transfer between electron carriers in control (both F(A) and F(B) present) and HgCl2-treated (F(B)-less) PS I complexes from Synechococcus sp. PCC 6301 and analyzed the kinetics of P700+ reduction by monitoring the absorbance changes at 832 nm in the presence of a fast electron donor (phenazine methosulfate (PMS)). In control PS I complexes exogenously added ferredoxin, or flavodoxin could be photoreduced on each flash, thus allowing P700+ to be reduced from PMS. In F(B)-less complexes, both in the presence and in the absence of ferredoxin or flavodoxin, P700+ was reduced from PMS only on the first flash and was reduced from F(X)- on the following flashes, indicating lack of electron transfer to ferredoxin or flavodoxin. In the F(B)-less complexes, a normal level of P700 photooxidation was detected accompanied by a high yield of charge recombination between P700+ and F(A)- in the presence of a slow donor, 2,6-dichlorophenol-indophenol. This recombination remained the only pathway of F(A)- reoxidation in the presence of added ferredoxin, consistent with the lack of forward electron transfer. F(A)- could be reoxidized by methyl viologen in F(B)-less PS I complexes, although at a concentration two orders of magnitude higher than is required in wild-type PS I complexes, thus implying the presence of a diffusion barrier. The inhibition of electron transfer to ferredoxin and flavodoxin was completely reversed after reconstituting the F(B) cluster. Using rate versus distance estimates for electron transfer rates from F(X) to ferredoxin for two possible orientations of PsaC, we conclude that the kinetic data are best compatible with PsaC being oriented with F(A) as the cluster proximal to F(X) and F(B) as the distal cluster that donates electrons to ferredoxin.  相似文献   

8.
The processes of electron transfer in cyanobacterial photosystem I (PS I) and photoelectric methods of the studies were reviewed. Particular emphasis was placed on structural and kinetic characteristics of the electron transport chain. The electrogenicity in PS I complex and its interaction with natural donors (plastocyanin, cytochrome c6), natural acceptors (ferredoxin, flavodoxin), and artificial acceptors and donors (methyl viologen and other redox dyes) were studied. On the basis of photoelectric measurements and the X-ray structural data, the operating dielectric constants in the vicinity of charge carriers in situ were calculated. The profile of distribution of the dielectric constant along the PS I pigment-protein complex (from plastocyanin or cytochrome c6 through the chlorophyll dimer P700 to the acceptor complex) was estimated, and possible mechanisms of correlation between the local dielectric constant and the electron transfer rate constant in the corresponding segment of the chain were discussed.  相似文献   

9.
Recent studies of point mutations in photosystem I have suggested that the two kinetic phases of phylloquinone reoxidation represent electron transfer in the two branches of cofactors. This interpretation implies that changes in the relative amplitudes of the two kinetic phases represent a change in the extent of electron transfer in the two branches. Using time-resolved electron paramagnetic resonance (EPR), this issue is investigated in subunit deletion mutants of Synechococcus sp. PCC 7002. The spin-polarized EPR signals of P(700)(+)A(1)(-) and P(700)(+)FeS(-), both at room temperature and in frozen solution, are altered by deletion of PsaF and/or PsaE, and the differences from the wild type are much more pronounced in PS I complexes isolated from the mutants using Triton X-100 rather than n-dodecyl beta-d-maltopyranoside. The changes in the transient EPR data for the mutant complexes are consistent with a significant fraction of reaction centers showing (i) faster electron transfer from A(1)(-) to F(X), (ii) slower forward electron transfer from A(0)(-) to A(1), and (iii) slightly altered quinone hyperfine couplings, possibly as a result of a change in the hydrogen bonding. The fraction of fast electron transfer and its dependence on the isolation procedure are estimated approximately from simulations of the room temperature EPR data. The results are discussed in terms of possible models for the electron transfer. It is suggested that the detergent-induced fraction of fast electron transfer is most likely due to alteration of the environment of the quinone in the PsaA branch of cofactors and is not the result of a change in the directionality of electron transfer.  相似文献   

10.
Isamu Ikegami  Pierre S  tif  Paul Mathis 《BBA》1987,894(3):414-422
Flash-induced absorption changes were studied on different timescales (nanosecond to millisecond) and at different temperatures (10 to 278 K) in highly enriched spinach PS I particles lacking vitamin K-1 and in which the electron transfer from the primary acceptor to the secondary acceptors was blocked. At all temperatures, the initial absorption change at 820 nm was followed by a fast decay (t1/2 ≈ 47 ns at 278 K and ≈ 82 ns at 10 K) which is attributed to the decay of the primary radical pair (P-700+-A0). A slower phase of absorption decay is attributed to the P-700 triplet state, which was formed as a result of the biradical recombination, with a yield of about 30% at 278 K and about 75% at 10 K. Under air, the 3P-700 state decayed with a t1/2 of about 50 μs at 278 K, whereas in the absence of oxygen it decayed with t1/2 ≈ 560 μs. At 278 K, this yield was shown to depend on the presence of a magnetic field, with a maximum around 60 G. The 3P-700 decay halftime was nearly independent of temperature in the absence of oxygen (t1/2 ≈ 1 ms at 10 K). The implications for the mechanisms involved in this decay are discussed. Addition of vitamin K-1 to these particles resulted in a decrease in the amplitude of the fast submicrosecond decay and a concomitant increase in the amplitude of a slow phase, indicating an efficient transfer from A0 to vitamin K-1. However, most functional properties of the acceptor A1 were not reconstituted under these conditions.  相似文献   

11.
Three types of PS I Chl-protein complex, PS I 180, PS I 65,and PS I 30, have been prepared and the kinetic properties ofthe transfer of electrons from plastocyanin to P700 in the PSI complexes with different sized antennae were examined. ThePS I 180 complex, which consists of 180 Chi per P700, showedthe almost same rate constant and effects of cations for thetransfer of electrons from plastocyanin to P700 as those obtainedwith PS I-enriched membrane fragments. The rate constant increasedwith the addition of low concentrations of monovalent and divalentcations, but decreased with high concentrations of cations.However, the rate was severely reduced in the case of the PSI 65 and PS I 30 complexes, and quite different effects of cationswere observed. Given the presence of additional 25- to 28-kDapolypeptides in the PS I 180 complex as compared to the PS I65 and PS I 30 complexes, we discuss a possible function forthese polypeptides in the regulation of the reaction betweenplastocyanin and P700. 1This work was supported in part by a Grant-in-Aid for ScientificResearch from the Ministry of Education, Science and Cultureof Japan. (Received May 27, 1988; Accepted November 7, 1988)  相似文献   

12.
To study electrogenesis the photosystem I particles fromSynechococcus elongatus were incorporated into asolectin liposomes, and fast kinetics of laser flash-induced electric potential difference generation has been measured by a direct electrometric method in proteoliposomes adsorbed on a phospholipid-impregnated collodion film. The photoelectric response has been found to involve three electrogenic stages associated with (i) iron-sulfur center Fx reduction by the primary electron donor P700, (ii) electron transfer between iron-sulfur centers Fx and FA/FB, and (iii) reduction of photo-oxidized P700+ by reduced cytochromec 553. The relative magnitudes of phases (ii) and (iii) comprised about 20% of phase (i).  相似文献   

13.
The reduction of P-700 by its electron donors shows two fast phases with half-times of 20 and 200 μs in isolated spinach chloroplasts. We have studied this electron transfer and the oxidation kinetics of cytochrome f.

Incubation of chloroplasts with KCN or HgCl2 decreased the amplitude of the 20 μs phase. This provides evidence for a function of plastocyanin as the immediate electron donor of P-700.

At low concentrations of salt and sugar the fast phases of P-700+ reduction were largely inhibited. Increasing concentrations of MgCl2, KCl and sorbitol (up to 5, 150 and 200 mM, respectively) were found to increase the relative amplitudes of the fast phases to about one-third of the total P-700 signal. Addition of both 3 mM MgCl2 and 200 mM sorbitol increased the relative amplitude of the 20 μs phase to 70%. The interaction between P-700 and plastocyanin is concluded to be favoured by a low internal volume of the thylakoids and compensation of surface charges of the membrane.

The half-time of 20 μs was not changed when the amplitude of this phase was altered either by salt and sorbitol, or by inhibition of plastocyanin. This is evidence for the existence of a complex between plastocyanin and P-700 with a lifetime long compared to the measuring time. The 200 μs phase exhibited changes in its half-time that indicated the participation of a more mobile pool of plastocyanin.

Cytochrome f was oxidized with a biphasic time course with half-times of 70–130 μs and 440–860 μs at different salt and sorbitol concentrations. The half-time of the faster phase and a short lag of 30–50 μs in the beginning of the kinetics indicate an oxidation of cytochrome f via the 20 μs electron transfer to P-700. An inhibition of this oxidation by MgCl2 suggests that the electron transfer from cytochrome f to complexed plastocyanin is not controlled by negative charges in contrast to that from plastocyanin to P-700.  相似文献   


14.
The back-reaction kinetics in Photosystem I (PS I) were studied on the microsecond-to-s time scale in cyanobacterial preparations, which differed in the number of iron-sulfur clusters to assess the contributions of particular components to the reduction of P700+. In membrane fragments and in trimeric P700-FA/FB complexes, the major contribution to the absorbance change at 820 nm (delta A820) was the back-reaction of FA- and/or FB- with lifetimes of approximately 10 and 80 ms (approximately 10% and 40% relative amplitude). The decay of photoinduced electric potential (delta psi) across a membrane with directionally incorporated P700-FA/FB complexes had similar kinetics. HgCl2-treated PS I complexes, which contain FA but no FB, retain both of these kinetic components, indicating that neither can be assigned uniquely to a specific acceptor. These results suggest that FA- reduces P700+ directly and argue for a rapid electron equilibration between FA and FB, which would eliminate their kinetic distinction in a back-reaction. In PsaC-depleted P700-Fx cores, as well as in P700-FA/FB complexes with chemically reduced FA and FB, the major contribution to the delta A820 and the delta psi decay is a biphasic back-reaction of F-X (approximately 400 microseconds and 1.5 ms) with some contribution from A-1 (approximately 10 microseconds and 100 microseconds), the latter of which is variable depending on experimental conditions. The delta A820 decay in a P700-A1 core devoid of all iron-sulfur clusters comprises two phases with lifetimes of 10 microseconds and 130 microseconds (2.7:1 ratio). The biexponential back-reaction kinetics found for each of the electron acceptors may be related to existence of different conformational states of the PS I complex. In all preparations studied, excitation at 532 nm with flash energies exceeding 10 mJ gives rise to formation of antenna 3Chl, which also contributes to delta A820 decay on the tens-of-microsecond time scale. A distinction between delta A820 components related to back-reactions and to 3Chl decay can be made by analysis of flash saturation dependencies and by measurements of kinetics with preoxidized P700.  相似文献   

15.
The x-ray structure analysis of photosystem I (PS I) crystals at 4-A resolution (Schubert et al., 1997, J. Mol. Biol. 272:741-769) has revealed the distances between the three iron-sulfur clusters, labeled F(X), F(1), and F(2), which function on the acceptor side of PS I. There is a general consensus concerning the assignment of the F(X) cluster, which is bound to the PsaA and PsaB polypeptides that constitute the PS I core heterodimer. However, the correspondence between the acceptors labeled F(1) and F(2) on the electron density map and the F(A) and F(B) clusters defined by electron paramagnetic resonance (EPR) spectroscopy remains controversial. Two recent studies (Diaz-Quintana et al., 1998, Biochemistry. 37:3429-3439;, Vassiliev et al., 1998, Biophys. J. 74:2029-2035) provided evidence that F(A) is the cluster proximal to F(X), and F(B) is the cluster that donates electrons to ferredoxin. In this work, we provide a kinetic argument to support this assignment by estimating the rates of electron transfer between the iron-sulfur clusters F(X), F(A), and F(B). The experimentally determined kinetics of P700(+) dark relaxation in PS I complexes (both F(A) and F(B) are present), HgCl(2)-treated PS I complexes (devoid of F(B)), and P700-F(X) cores (devoid of both F(A) and F(B)) from Synechococcus sp. PCC 6301 are compared with the expected dependencies on the rate of electron transfer, based on the x-ray distances between the cofactors. The analysis, which takes into consideration the asymmetrical position of iron-sulfur clusters F(1) and F(2) relative to F(X), supports the F(X) --> F(A) --> F(B) --> Fd sequence of electron transfer on the acceptor side of PS I. Based on this sequence of electron transfer and on the observed kinetics of P700(+) reduction and F(X)(-) oxidation, we estimate the equilibrium constant of electron transfer between F(X) and F(A) at room temperature to be approximately 47. The value of this equilibrium constant is discussed in the context of the midpoint potentials of F(X) and F(A), as determined by low-temperature EPR spectroscopy.  相似文献   

16.
Cytochrome c6 (Cyt) from the thermophilic cyanobacterium Phormidium laminosum has been purified and characterized. It is a mildly acidic protein, with physicochemical properties very similar to those of plastocyanin (Pc). This is in agreement with the functional interchangeability of the two metalloproteins as electron donors to Photosystem I (PS I). The kinetic analyses of the interaction of Pc and Cyt with Photosystem I show that both metalloproteins reduce PS I with similar efficiencies, according to an oriented collisional kinetic model involving repulsive electrostatic interactions. The thermostability study of the Phormidium Pc/PS I system compared with those from mesophilic cyanobacteria (Synechocystis, Anabaena and Pseudanabaena) reveals that Pc is the partner limiting the thermostability of the Phormidium couple. The cross-reactions between Pc and PS I from different organisms demonstrate not only that Phormidium Pc enhances the stability of the Pc/PS I system using PS I from mesophilic cyanobacteria, but also that Phormidium PS I possesses a higher thermostability than the other photosystems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Cucumber leaf discs were illuminated at room-temperature with far-red light to photo-oxidise P700, the chlorophyll dimer in Photosystem (PS) I. The post-illumination kinetics of P700(+) re-reduction were studied in the presence of inhibitors or cofactors of photosynthetic electron transport. The re-reduction kinetics of P700(+) were well fitted as the sum of three exponentials, each with its amplitude and rate coefficient, and an initial flux (at the instant of turning off far-red light) given as the product of the two. Each initial flux is assumed equal to a steady state flux during far-red illumination. The fast phase of re-reduction, with rate coefficient k (1) approximately 10 s(-1), was completely abolished by a saturating concentration of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU); it is attributed to electron flow to P700(+) from PS II, which was stimulated to some extent by far-red light. The intermediate phase, with rate coefficient k (1) approximately 1 s(-1), was only partly diminished by methyl viologen (MV) which diverts electron flow to oxygen. The intermediate phase is attributed to electron donation from reduced ferredoxin to the intersystem pool; reduced ferredoxin could be formed: (1) directly by electron donation on the acceptor of PS I; and/or (2) indirectly by stromal reductants, in line with only a partial inhibition of the intermediate phase by MV. Duroquinol enhanced the intermediate phase in the presence of DCMU, presumably through its interaction with thylakoid membrane components leading to the partial reduction of plastoquinone. The slow phase of P700(+) re-reduction, with rate coefficient k (1) approximately 0.1 s(-1), was unaffected by DCMU and only slightly affected by MV; it could be associated with electron donation to either: (1) the intersystem chain by stromal reductants catalysed by NAD(P)H dehydrogenase slowly; or (2) plastocyanin/P700(+) by ascorbate diffusing across the thylakoid membrane to the lumen. It is concluded that a post-illumination analysis of the fluxes to P700(+) can be used to probe the pathways of electron flow to PS I in steady state illumination.  相似文献   

18.
The results of studies of charge transfer in cyanobacterial photosystem I (PS I) using the photoelectric method are reviewed. The electrogenicity in the PS I complex and its interaction with natural donors (plastocyanin, cytochrome c(6)), natural acceptors (ferredoxin, flavodoxin), or artificial acceptors and donors (methyl viologen and other redox dyes) were studied. The operating dielectric constant values in the vicinity of the charge transfer carriers in situ were calculated. The profile of distribution of the dielectric constant along the PS I pigment-protein complex (from plastocyanin or cytochrome c(6) through the chlorophyll dimer P700 to the acceptor complex) was estimated, and possible mechanisms of correlation between the local dielectric constant and electron transfer rate constant were discussed.  相似文献   

19.
20.
The charge separation P700*A(0) --> P700(+)A(0)(-) and the subsequent electron transfer from the primary to secondary electron acceptor have been studied by subtracting absorption difference profiles for cyanobacterial photosystem I (PS I) complexes with open and closed reaction centers. Samples were excited at 660 nm, which lies toward the blue edge of the core antenna absorption spectrum. The resulting PS I kinetics were analyzed in terms of the relevant P700, P700(+), A(0), and A(0)(-) absorption spectra. In our kinetic model, the radical pair P700(+)A(0)(-) forms with 1.3 ps rise kinetics after creation of electronically excited P700*. The formation of A(1)(-) via electron transfer from A(0)(-) requires approximately 13 ps. The kinetics of the latter step are appreciably faster than previously estimated by other groups (20--50 ps).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号