首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sugasawa K  Okuda Y  Saijo M  Nishi R  Matsuda N  Chu G  Mori T  Iwai S  Tanaka K  Tanaka K  Hanaoka F 《Cell》2005,121(3):387-400
The xeroderma pigmentosum group C (XPC) protein complex plays a key role in recognizing DNA damage throughout the genome for mammalian nucleotide excision repair (NER). Ultraviolet light (UV)-damaged DNA binding protein (UV-DDB) is another complex that appears to be involved in the recognition of NER-inducing damage, although the precise role it plays and its relationship to XPC remain to be elucidated. Here we show that XPC undergoes reversible ubiquitylation upon UV irradiation of cells and that this depends on the presence of functional UV-DDB activity. XPC and UV-DDB were demonstrated to interact physically, and both are polyubiquitylated by the recombinant UV-DDB-ubiquitin ligase complex. The polyubiquitylation altered the DNA binding properties of XPC and UV-DDB and appeared to be required for cell-free NER of UV-induced (6-4) photoproducts specifically when UV-DDB was bound to the lesion. Our results strongly suggest that ubiquitylation plays a critical role in the transfer of the UV-induced lesion from UV-DDB to XPC.  相似文献   

2.
Ultraviolet (UV) light induces a variety of lesions in DNA of which the pyrimidine dimer represents the major species. Pyrimidine dimers exist as both a cyclobutane type and a 6-4' (pyrimidine-2'-one) photoproduct. We have purified a protein of M(r) approximately 125,000 from HeLa cell nuclei which binds efficiently to double-stranded DNA irradiated with UV light but not to undamaged DNA. This protein was designated UVBP1 (UV damage binding protein 1). UVBP1 did not recognise DNA damaged by cisplatin. Using oligonucleotides with a single dipyrimidine site for induction of UV photoproducts, binding of UVBP1 to a TC-containing substrate was shown to be more efficient than to substrates containing a TT, a CT or a CC pair. This binding specificity implies selective recognition of the 6-4' photoproduct. Further evidence for this was provided by the finding that hot alkali treatment of the substrate (which selectively hydrolyses 6-4' photoproducts) abrogated binding of UVBP1, whereas incubation with DNA photolyase to remove cyclobutane dimers did not. No detectable DNA helicase, ATPase or exonuclease activity was associated with the purified protein. We suggest that UVBP1 may be involved in the lesion recognition step of DNA excision repair and could contribute to the preferential repair of 6-4' photoproducts from the DNA of UV-irradiated mammalian cells.  相似文献   

3.
The effect of negative supercoiling on UvrABC incision of covalently closed duplex DNA circles containing either a furan-side monoadduct or a cross-link of 4'-hydroxymethyl-4,5',8-trimethylpsoralen at a unique site was examined. The rate of UvrABC incision of these DNA substrates was measured as a function of superhelical density, sigma, for values of sigma between 0 and -0.050. The monoadducted DNA substrate was incised at close to the maximum rate at all superhelical densities, with only a slight stimulation of activity between sigma = 0 and -0.035. In contrast, efficient UvrABC incision of the cross-linked DNA substrate required the DNA to be underwound, and activity showed a linear dependence on superhelical density up to sigma = -0.035. DNase I protection studies show that in the presence of both UvrA and UvrB a protein complex binds to the site of a psoralen monoadduct or cross-link in linear DNA. This UvrA-UvrB-dependent complex binds with similar affinity to both the monoadducted and the cross-linked DNA helices. However, differences in the DNase I footprint on these two DNA substrates indicate that the interaction of this protein complex is different at these two lesions. The addition of UvrC to linear DNA molecules that are saturated at the site of the lesion with the UvrA-UvrB-dependent complex resulted in efficient nicking of the monoadducted DNA, but not the cross-linked DNA. Thus, the properties of a DNA lesion site that lead to UvrAB recognition and binding are not necessarily sufficient to allow incision when all three Uvr subunits are present. We propose that after recognition and binding of a lesion site by the UvrAB complex and prior to incision, the damaged DNA helix undergoes a conformational change such as unwinding or melting that is induced by the lesion-bound Uvr complex.  相似文献   

4.
The response of cells to ionizing radiation-induced DNA double-strand breaks (DSB) is determined by the activation of multiple pathways aimed at repairing the injury and maintaining genomic integrity. Densely ionizing radiation induces complex damage consisting of different types of DNA lesions in close proximity that are difficult to repair and may promote carcinogenesis. Little is known about the dynamic behavior of repair proteins on complex lesions. In this study we use live-cell imaging for the spatio-temporal characterization of early protein interactions at damage sites of increasing complexity. Beamline microscopy was used to image living cells expressing fluorescently-tagged proteins during and immediately after charged particle irradiation to reveal protein accumulation at damaged sites in real time. Information on the mobility and binding rates of the recruited proteins was obtained from fluorescence recovery after photobleaching (FRAP). Recruitment of the DNA damage sensor protein NBS1 accelerates with increasing lesion density and saturates at very high damage levels. FRAP measurements revealed two different binding modalities of NBS1 to damage sites and a direct impact of lesion complexity on the binding. Faster recruitment with increasing lesion complexity was also observed for the mediator MDC1, but mobility was limited at very high damage densities due to nuclear-wide binding. We constructed a minimal computer model of the initial response to DSB based on known protein interactions only. By fitting all measured data using the same set of parameters, we can reproduce the experimentally characterized steps of the DNA damage response over a wide range of damage densities. The model suggests that the influence of increasing lesion density accelerating NBS1 recruitment is only dependent on the different binding modes of NBS1, directly to DSB and to the surrounding chromatin via MDC1. This elucidates an impact of damage clustering on repair without the need of invoking extra processing steps.  相似文献   

5.
Recognition of DNA double-strand breaks during non-homologous end joining is carried out by the Ku70-Ku80 protein, a 150 kDa heterodimer that recruits the DNA repair kinase DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to the lesion. The atomic structure of a truncated Ku70-Ku80 was determined; however, the subunit-specific carboxy-terminal domain of Ku80--essential for binding to DNA-PKcs--was determined only in isolation, and the C-terminal domain of Ku70 was not resolved in its DNA-bound conformation. Both regions are conserved and mediate protein-protein interactions specific to mammals. Here, we reconstruct the three-dimensional structure of the human full-length Ku70-Ku80 dimer at 25 A resolution, alone and in complex with DNA, by using single-particle electron microscopy. We map the C-terminal regions of both subunits, and their conformational changes after DNA and DNA-PKcs binding to define a molecular model of the functions of these domains during DNA repair in the context of full-length Ku70-Ku80 protein.  相似文献   

6.
DNA Photolyase is a flavoprotein that uses light to repair cyclobutylpyrimidine dimers in DNA. From considerations of the crystal structure of the protein, it has been hypothesized that the dimer lesion is flipped out of the DNA double helix into the substrate binding pocket. We have used a fluorescent adenine analog, 2-aminopurine (2-Ap), as a probe of local double helical structure upon binding of the substrate to the protein. Our results show that the local structure around the thymidine lesion changes dramatically upon binding to Photolyase. This is consistent with base flipping of the lesion into the protein binding cavity with concomitant destacking of the opposing complementary 2-Ap nucleotide.  相似文献   

7.
The UvrA protein is the initial DNA damage-sensing protein in bacterial nucleotide excision repair and detects a wide variety of structurally unrelated lesions. After initial recognition of DNA damage, UvrA loads the UvrB protein onto the DNA. This protein then verifies the presence of a lesion, after which UvrA is released from the DNA.UvrA contains two ATPase domains, both belonging to the ABC ATPase superfamily. We have determined the activities of two mutants, in which a single domain was deactivated. Inactivation of either one ATPase domain in Escherichia coli UvrA results in a complete loss of ATPase activity, indicating that both domains function in a cooperative way. We could show that this ATPase activity is not required for the recognition of bulky lesions by UvrA, but it does promote the specific binding to the less distorting cyclobutane–pyrimidine dimer (CPD). The two ATPase mutants also show a difference in UvrB-loading, depending on the length of the DNA substrate. The ATPase domain I mutant was capable of loading UvrB on a lesion in a 50 bp fragment, but this loading was reduced on a longer substrate. For the ATPase domain II mutant the opposite was found: UvrB could not be loaded on a 50 bp substrate, but this loading was rescued when the length of the fragment was increased. This differential loading of UvrB by the two ATPase mutants could be related to different interactions between the UvrA and UvrB subunits.  相似文献   

8.
Tandem helical repeats have emerged as an important DNA binding architecture. DNA glycosylase AlkD, which excises N3- and N7-alkylated nucleobases, uses repeating helical motifs to bind duplex DNA and to selectively pause at non-Watson–Crick base pairs. Remodeling of the DNA backbone promotes nucleotide flipping of the lesion and the complementary base into the solvent and toward the protein surface, respectively. The important features of this new DNA binding architecture that allow AlkD to distinguish between damaged and normal DNA without contacting the lesion are poorly understood. Here, we show through extensive mutational analysis that DNA binding and N3-methyladenine (3mA) and N7-methylguanine (7mG) excision are dependent upon each residue lining the DNA binding interface. Disrupting electrostatic or hydrophobic interactions with the DNA backbone substantially reduced binding affinity and catalytic activity. These results demonstrate that residues seemingly only involved in general DNA binding are important for catalytic activity and imply that base excision is driven by binding energy provided by the entire substrate interface of this novel DNA binding architecture.  相似文献   

9.
The mutL gene of Escherichia coli, which is involved in the repair of mispaired and unpaired nucleotides in DNA, has been independently cloned and the gene product purified. In addition to restoring methyl-directed DNA repair in extracts prepared from mutL strains, the purified MutL protein binds to both double and single stranded DNA. The affinity constant of MutL for unmethylated single stranded DNA was twice that of its affinity constant for methylated single stranded DNA and methylated or unmethylated double stranded DNA. The binding of MutL to double stranded DNA was not affected by the pattern of DNA methylation or the presence of a MutHLS-repairable lesion.  相似文献   

10.
The ability of the tumor suppressor protein, p53, to recognize certain types of DNA lesions may represent one of the mechanisms by which this protein modulates cellular response to DNA damage. p53 DNA binding properties are regulated by several factors, such as post-translational modifications including phosphorylation and acetylation, regulation by its own C-terminal domain and interactions with other cellular proteins. Substrates resembling Holliday junctions and extra base bulges were used to study the effect of three nuclear proteins, HMG-1, HMG I(Y) and hMSH2–hMSH6, on the lesion binding properties of p53. Gel retardation assays revealed that the three proteins had varying effects on p53 binding to these substrates. HMG-1 did not influence p53 binding to Holliday junctions or 3-cytosine bulges. HMG I(Y) rapidly dissociated p53 complexes with Holliday junctions but not 3-cytosine bulges. Finally, the mismatch repair protein complex, hMSH2–hMSH6, enhanced p53 binding to both substrates by 3–4-fold. Together, these results demonstrate that p53 DNA binding activity is highly influenced by the presence of other proteins, some having a dominant effect while others have a negative effect.  相似文献   

11.
In addition to binding DNA in a sequence-specific manner, the p53 tumour suppressor protein can interact with damaged DNA. In order to understand which structural features in DNA the C-teminal domain recognises we have studied the interaction of p53 protein with different types of DNA oligonucleotides imitating damaged DNA. Here we show that one unpaired nucleotide within double-stranded (ds)DNA is sufficient for recognition by the p53 C-terminus, either as a protruding end or as an internal gap in dsDNA. C-terminal interaction with DNA ends facilitated core domain binding to DNA, whereas interaction with gaps prevented core domain–DNA complexing, implying that p53 might adopt distinct conformations upon binding to different DNA lesions. These observations suggest that both single-strand and double-strand breaks can serve as a target for p53 C-terminal recognition in vivo and indicate that p53 might recruit different repair factors to the sites of damaged DNA depending on the type of lesion.  相似文献   

12.
Using a DNA band shift assay, we have identified a DNA-binding protein complex in primate cells which is present constitutively and has a high affinity for UV-irradiated, double-stranded DNA. Cells pretreated with UV light, mitomycin C, or aphidicolin have higher levels of this damage-specific DNA-binding protein complex, suggesting that the signal for induction can either be damage to the DNA or interference with cellular DNA replication. Physiochemical modifications of the DNA and competition analysis with defined substrates suggest that the most probable target site for the damage-specific DNA-binding protein complex is a 6-4'-(pyrimidine-2'-one)-pyrimidine dimer: specific binding could not be detected with probes which contain -TT- cyclobutane dimers, and damage-specific DNA binding did not decrease after photoreactivation of UV-irradiated DNA. This damage-specific DNA-binding protein complex is the first such inducible protein complex identified in primate cells. Cells from patients with the sun-sensitive cancer-prone disease, xeroderma pigmentosum (group E), are lacking both the constitutive and the induced damage-specific DNA-binding activities. These findings suggest a possible role for this DNA-binding protein complex in lesion recognition and DNA repair of UV-light-induced photoproducts.  相似文献   

13.
In mammalian cells, nucleotide excision repair (NER) is the major pathway for the removal of bulky DNA adducts. Many of the key NER proteins are members of the XP family (XPA, XPB, etc.), which was named on the basis of its association with the disorder xerodoma pigmentosum. Human replication protein A (RPA), the ubiquitous single-stranded DNA-binding protein, is another of the essential proteins for NER. RPA stimulates the interaction of XPA with damaged DNA by forming an RPA–XPA complex on damaged DNA sites. Binding of RPA to the undamaged DNA strand is most important during NER, because XPA, which directs the excision nucleases XPG and XPF, must bind to the damaged strand. In this study, nuclear magnetic resonance (NMR) spectroscopy was used to assess the binding of the tandem high affinity DNA-binding domains, RPA-AB, and of the isolated domain RPA-A, to normal DNA and damaged DNA containing the cyclobutane pyrimidine dimer (CPD) lesion. Both RPA-A and RPA-AB were found to bind non- specifically to both strands of normal and CPD- containing DNA duplexes. There were no differences observed when binding to normal DNA duplex was examined in the presence of the minimal DNA-binding domain of XPA (XPA-MBD). However, there is a drastic difference for CPD-damaged DNA duplex as both RPA-A and RPA-AB bind specifically to the undamaged strand. The strand-specific binding of RPA and XPA to the damaged duplex DNA shows that RPA and XPA play crucial roles in damage verification and guiding cleavage of damaged DNA during NER.  相似文献   

14.
A 100-kDa DNA binding protein was found to be dramatically up-regulated upon the mitogenic stimulation of murine splenocytes with bacterial lipopolysaccharide (LPS). The induced DNA binding protein was also found to exhibit moderate binding specificity for the immunoglobulin isotype switch DNA repeats. Furthermore, the induction of the 100-kDa protein by LPS was found to be mediated by both an increase in the protein's stability and an increase in the synthesis of the protein. In vitro phosphorylation experiments revealed that the 100-kDa DNA binding protein was one of the most heavily phosphorylated proteins in both lymphoid and nonlymphoid nuclear extracts. Although this in vitro phosphorylation initially appeared to be mediated by a potent nuclear kinase activity, it was later determined that a significant part of the detected labeling was due to the direct binding of ATP by the 100-kDa protein. Antibodies raised to the 100-kDa DNA binding protein were used to isolate cDNA clones from a lymphocyte cDNA λgt11 expression library. Nucleotide sequence analysis revealed that the cloned cDNAs were identical to the mouse nucleolin gene. The β-galactosidase fusion proteins (encoded by exons 3-14 of nucleolin) and a more severely truncated 45-kDa protein (encoded by exons 5-14 of nucleolin) were both found to bind strongly to DNA and ATP. Furthermore, the strength of DNA binding was found to be highly dependent on the overall dG content of the DNA probes. Our experiments also revealed that apart from binding ATP and G-rich DNA, nucleolin directly bound GTP, dATP, and dGTP, but not dCTP, dTTP, or dUTP. Computer analysis revealed that the putative ATP binding domains appear to fall within two of the phylogenetically conserved RNA binding domains of nucleolin.  相似文献   

15.
DNA damage-dependent signaling by the DNA mismatch repair (MMR) system is thought to mediate cytotoxicity of the anti-tumor drug cisplatin through molecular mechanisms that could differ from those required for normal mismatch repair. The present study investigated whether ATP-dependent biochemical properties of Escherichia coli MutS protein differ when the protein interacts with a DNA oligonucleotide containing a GT mismatch versus a unique site specifically placed cisplatin compound lesion, a cisplatin 1,2-d(GpG) intrastrand cross-link with a mispaired thymine opposite the 3' platinated guanine. MutS exhibited substantial affinity for this compound lesion in hydrolytic and in non-hydrolytic conditions of ATP, contrasting with the normal nucleotide inhibition effect of mispair binding. The cisplatin compound lesion was also shown to stimulate poorly MutS ATPase activity to approach the hydrolysis rate induced by nonspecific DNA. Moreover, MutS undergoes distinct conformation changes in the presence of the compound lesion and ATP under hydrolytic conditions as shown by limited proteolysis. In the absence of MutS, the cisplatin compound lesion was shown to induce a 39 degrees rigid bending of the DNA double helix contrasting with an unbent state for DNA containing a GT mispair. Furthermore, an unbent DNA substrate containing a monofunctional adduct mimicking a cisplatin residue failed to form a persistent nucleoprotein complex with MutS in the presence of adenine nucleotide. We propose that DNA bending could play a role in MutS biochemical modulations induced by a compound lesion and that cisplatin DNA damage signaling by the MMR system could be modulated in a direct mode.  相似文献   

16.
Replication protein A (RAP) is a eukaryotic single-stranded DNA binding protein involved in DNA replication, repair, and recombination. Recent studies indicate that RPA preferentially binds the damaged sites rather than the undamaged sites. Therefore, RPA is thought to be a member of repair factories or a sensor of lesion on DNA. To obtain further information of behavior of RPA against the oxidized lesion, we studied the binding affinity of RPA for the single-stranded DNA containing 5-formyluracil, a major lesion of thymine base yielded by the oxidation, using several synthetic oligonucleotides. The affinity of RPA for oligonucleotides was determined by gel shift assay. Results suggest that the surrounding sequence of 5-formyluracil may affect the affinity for RPA, and that the 5-formyluracil on the purine stretch but not the pyrimidine stretch increases the affinity for RPA. Results of affinity labeling experiment of RPA with the oligonucleotides containing 5-formyluracil indicate that RPA1 subunit may directly recognize and bind to the 5-formyluracil on the single-stranded DNA.  相似文献   

17.
C P Selby  A Sancar 《Biochemistry》1991,30(16):3841-3849
(A)BC excinuclease from Escherichia coli catalyzes the initial step of nucleotide excision repair. It recognizes and binds to many types of covalent modifications in DNA and incises the damaged strand on both sides of the lesion. We employed a variety of noncovalent DNA binding drugs to examine in vitro the mechanisms and the nature of the DNA-drug interactions responsible for two phenomena: inhibition of excision repair by caffeine and other noncovalent DNA binding compounds; incision of undamaged DNA produced by (A)BC excinuclease in the presence of the bisintercalating drug ditercalinium. All of the chemicals examined (e.g., actinomycin D, caffeine, ethidium bromide, and Hoechst 33258) inhibited incision of a covalent adduct by (A)BC excinuclease, and direct evidence is given for a common mechanism in which UvrA is depleted by binding to drug-undamaged DNA complexes. In the absence of significant amounts of undamaged DNA, another mechanism of inhibition was observed, in which enzyme bound to noncovalent drug-DNA complexes in the vicinity of the lesion prevents formation of preincision complexes at the lesion. Ditercalinium and unexpectedly all of the other drugs examined promoted the incision of undamaged DNA when the enzyme was present at high concentration. Thus, this activity contrary to previous assumptions is not unique to bisintercalators. Another unexpected finding was stimulation of incision at certain sites of photodamage in DNA produced by low concentrations of noncovalent DNA binding chemicals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Modification of the lysine residues in the lactose repressor protein has been carried out with trinitrobenzenesulfonate. Reaction of lysine residues at positions 33, 37, 108, 290, and 327 was observed. Inducer binding was increased by modification with this reagent, while both nonspecific DNA binding and operator DNA binding were diminished, although to differing degrees. The loss in operator DNA binding capacity was complete with modification of approximately 2 equiv of lysine per monomer. The extent of reaction was affected by the presence of both sugar and DNA ligands; binding activities of the modified protein and reaction pattern of the lysines were perturbed by these ligands. The presence of operator or nonspecific DNA during the reaction protected against specific and nonspecific DNA binding activity loss. This protection presumably occurs by steric restriction of reagent access to lysine residues which are essential for both nonspecific and operator binding interactions. Lysines-33 and -108 were protected from modification in the presence of DNA. These experiments suggest that the charge on the lysine residues is important for protein interaction with DNA and that steric constraints for operator DNA interaction with the protein are more restrictive than for nonspecific DNA binding. In contrast, inducer (isopropyl beta-D-thiogalactoside) presence partially protected lysine-290 from modification while significantly enhancing reaction at lysine-327. Conformational alterations consequent to inducer binding are apparently reflected in these altered lysine reactivities.  相似文献   

19.
Park S  Lippard SJ 《Biochemistry》2011,50(13):2567-2574
HMGB1, one of the most abundant nuclear proteins, has a strong binding affinity for cisplatin-modified DNA. It has been proposed that HMGB1 enhances the anticancer efficacy of cisplatin by shielding platinated DNA lesions from repair. Two cysteine residues in HMGB1 domain A form a reversible disulfide bond under mildly oxidizing conditions. The reduced domain A protein binds to a 25-bp DNA probe containing a central 1,2-d(GpG) intrastrand cross-link, the major platinum-DNA adduct, with a 10-fold greater binding affinity than the oxidized domain A. The binding affinities of singly and doubly mutated HMGB1 domain A, respectively deficient in one or both cysteine residues that form the disulfide bond, are unaffected by changes in external redox conditions. The redox-dependent nature of the binding of HMGB1 domain A to cisplatin-modified DNA suggests that formation of the intradomain disulfide bond induces a conformational change that disfavors binding to cisplatin-modified DNA. Hydroxyl radical footprinting analyses of wild-type domain A bound to platinated DNA under different redox conditions revealed identical cleavage patterns, implying that the asymmetric binding mode of the protein across from the platinated lesion is conserved irrespective of the redox state. The results of this study reveal that the cellular redox environment can influence the interaction of HMGB1 with the platinated DNA and suggest that the redox state of the A domain is a potential factor in regulating the role of the protein in modulating the activity of cisplatin as an anticancer drug.  相似文献   

20.
Human XPA is an essential component in the multienzyme nucleotide excision repair (NER) pathway. The solution structure of the minimal DNA binding domain of XPA (XPA-MBD: M98-F219) was recently determined [Buchko et al. (1998) Nucleic Acids Res. 26, 2779-2788, Ikegami et al. (1998) Nat. Struct. Biol. 5, 701-706] and shown to consist of a compact zinc-binding core and a loop-rich C-terminal subdomain connected by a linker sequence. Here, the solution structure of XPA-MBD was further refined using an entirely new class of restraints based on pseudocontact shifts measured in cobalt-substituted XPA-MBD. Using this structure, the surface of XPA-MBD which interacts with DNA and a fragment of the largest subunit of replication protein A (RPA70 Delta C327: M1-Y326) was determined using chemical shift mapping. DNA binding in XPA-MBD was highly localized in the loop-rich subdomain for DNA with or without a lesion [dihydrothymidine (dhT) or 6-4-thymidine-cytidine (64TC)], or with DNA in single- or double-stranded form, indicating that the character of the lesion itself is not the driving force for XPA binding DNA. RPA70 Delta C327 was found to contact regions in both the zinc-binding and loop-rich subdomains. Some overlap of the DNA and RPA70 Delta C327 binding regions was observed in the loop-rich subdomain, indicating a possible cooperative DNA-binding mode between XPA and RPA70 Delta C327. To complement the chemical shift mapping data, the backbone dynamics of free XPA-MBD and XPA-MBD bound to DNA oligomers containing dhT or 64TC lesions were investigated using 15N NMR relaxation data. The dynamic analyses for the XPA-MBD complexes with DNA revealed localized increases and decreases in S2 and an increase in the global correlation time. Regions of XPA-MBD with the largest increases in S2 overlapped regions having the largest chemical shifts changes upon binding DNA, indicating that the loop-rich subdomain becomes more rigid upon binding DNA. Interestingly, S2 decreased for some residues in the zinc-binding core upon DNA association, indicating a possible concerted structural rearrangement on binding DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号