首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Macrophages carry receptors on their surface for acetylated low density lipoprotein (ac-LDL). Receptor-mediated endocytosis of ac-LDL is followed by intracellular cholesterol accumulation. We investigated whether occupation of these binding sites evokes the release of hydrolytic enzymes from mouse peritoneal macrophages cultured for up to 48 h. ac-LDL at concentrations ranging from 25-250 micrograms protein/ml was noted to promote in a dose-dependent fashion secretion of the neutral proteinase elastase (EC 3.4.21.37) and the lysosomal acid hydrolases N-acetyl-beta-glucosaminidase (EC 3.2.1.30), beta-glucuronidase (EC 3.2.1.31), beta-galactosidase (EC 3.2.1.23), alpha-mannosidase (EC 3.2.1.24) and cathepsin D (EC 3.4.23.5). This stimulatory effect was non-cytotoxic. LDL modified by treatment with malondialdehyde was also capable of augmenting enzyme liberation into culture supernates. These findings may have implications for some aspects of the atherosclerotic process.  相似文献   

3.
The low density lipoproteins (LDL) of human plasma consist of a series of discrete particle subspecies of distinct physicochemical, immunological, and hydrodynamic properties. Such structural differences are intimately linked to the metabolic heterogeneity of circulating LDL in vivo. The current studies were designed to evaluate and compare the interaction of discrete LDL subspecies from normolipidemic subjects with the LDL receptor. Plasma LDL of d 1.019-1.063 g/ml from healthy males were fractionated into 15 subspecies of defined physicochemical characteristics by isopycnic density gradient ultracentrifugation as described earlier (Chapman et al., J. Lipid Res. 1988. 29: 442-458). The major LDL subspecies, LDL-5 to LDL-10, exhibited an overall range in density from 1.0244 to 1.0435 g/ml; individual subspecies increased in density by increments of 0.027 (LDL-5), 0.026 (LDL-6), 0.030 (LDL-7), 0.031 (LDL-8), 0.035 (LDL-9), and 0.042 g/ml (LDL-10), respectively. Taken together, these subspecies accounted for approximately 70% of the total mass of LDL of d 1.019-1.063 g/ml; their cholesterol: protein ratios decreased from 1.70 to 1.12 and particle size from 275 to 260 A with increase in density. ApoB-100 was the unique protein component in subspecies 5-8, with trace amounts (less than 0.2% of apoLDL) of both apoA-I and apoE in subspecies 9 and 10. The interaction of individual LDL subspecies with the LDL receptor on cultured human U-937 monocyte-like cells was compared by determining receptor binding affinities at 4 degrees C. Scatchard analysis of specific binding curves demonstrated a single class of binding site for each subspecies. The lowest dissociation constants were displayed by LDL subspecies 6 (Kd 5.71 nM), 7 (Kd 5.24 nM) and 8 (Kd 4.67 nM), while subspecies 5, 9, and 10 displayed significantly higher Kd values (8.35, 7.20, and 6.87 nM, respectively). Competitive displacement studies at 4 degrees C, in which unlabeled subspecies from the same gradient series competed for binding with 125I-labeled LDL subspecies, confirmed the relative binding affinities of these subspecies. As the hydrophobic lipid core of LDL undergoes a thermotropic transition at approximately 37 degrees C, which may in turn influence the surface structure of the particle, internalization and degradation studies were performed at 37 degrees C. No effect of temperature was detectable; again, LDL subspecies at each extreme of the density distribution (LDL-5 and LDL-10) displayed significantly lower binding affinities for the LDL receptor than that from the peak region (LDL-7).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Receptor-mediated incorporations of two modified low density lipoproteins (LDL), acetylated LDL (acetyl-LDL) and oxidized LDL were compared in vitro in mouse peritoneal macrophages by cross-competition experiments. Excess amount of oxidized LDL inhibits the binding of [125I]acetyl-LDL only partially, and excess amount of acetyl-LDL inhibits that of [125I]oxidized LDL also only partially, suggesting that the uptake of the two LDL by macrophages is mediated by partially overlapped yet different mechanisms. Scatchard analysis of [125I]acetyl-LDL binding showed a linear plot and addition of excess amount of oxidized LDL partially displaced the binding sites without changing the affinity, suggesting that there are two classes of receptors with similar affinity; one is specific for acetyl-LDL and the other is common. And the plot of [125I]oxidized LDL binding showed a curvilinear plot and excess amount of acetyl-LDL partially displaced the binding sites of the low affinity, suggesting that there are two classes of binding sites with different affinities and the low affinity one is shared with acetyl-LDL. These results indicate that macrophage receptors for modified LDL consist of at least three receptors, two of which are specific for each LDL and the rest is a common receptor.  相似文献   

5.
Normal human fasting very low density lipoproteins (n-VLDL; d less than 1.006 g/ml) were demonstrated to be taken up and degraded by human monocyte-macrophages via a saturable process distinct from the previously described LDL and scavenger receptors. Through the use of apolipoprotein-phospholipid complexes, apolipoprotein E (apoE) was identified as the ligand mediating recognition of n-VLDL by this receptor.  相似文献   

6.
125I-labeled low density lipoprotein (LDL) covalently bonded to Sepharose beads was not degraded by normal human fibroblasts nor did it trigger inhibition of sterol synthesis. The Sepharose beads loaded with LDL bound very tightly to the surface both of normal fibroblasts and fibroblasts from a subject with homozygous familial hypercholesterolemia; control Sepharose beads (activated sites covered with glycine) did not adhere to either cell type. LDL was extracted by a modification of the method of Gustafson (Gustafson, A. (1965) J. Lipid Res. 6, 512-517), so as to remove essentially all cholesterol, cholesterol ester and triglyceride. This modified LDL was bound, internalized and degraded as well as or better than native LDL. However, it failed to suppress sterol synthesis. These results provide additional evidence that the sterol moiety of the LDL is the key component affecting sterol synthesis. They also imply that the neutral lipids of LDL play a minor role in the binding of LDL to cell membranes and that the apoprotein rather than molecular size and shape is the critical factor.  相似文献   

7.
Hypertriglyceridemia is an important risk factor for atherosclerosis, especially in obesity. Macrophages are one of the primary cell types involved in atherogenesis and are thought to contribute to lesion formation through both lipid accumulation and proinflammatory gene expression. In this study, we sought to determine the direct impact of triglyceride (TG)-rich VLDL-induced lipid accumulation on macrophage proinflammatory processes. Incubation of mouse peritoneal macrophages with 100 microg/ml VLDL for 6 h led to 2.8- and 3.7-fold increases in intracellular TGs and FFAs, respectively (P < 0.05). The inflammatory proteins tumor necrosis factor-alpha, interleukin-1beta, monocyte chemoattractant protein-1, intercellular adhesion molecule-1, matrix metalloproteinase 3 (MMP3), and macrophage inflammatory protein-1alpha (MIP-1alpha) were all upregulated by at least 2-fold (P < 0.05) in a dose-dependent manner in VLDL-treated macrophages. The increase in inflammatory gene expression coincided with the phosphorylation of the mitogen-activated protein kinase (MAPK) pathway members extracellular signal-regulated kinase (ERK) 1/2, stress-activated protein kinase/c-Jun NH2-terminal kinase, and p38 MAPK and was ameliorated by U0126, an inhibitor of ERK1/2. Inhibition of extracellular TG hydrolysis with tetrahydrolipstatin (Orlistat) resulted in the absence of intracellular TG and FFA accumulation and was accompanied by the amelioration of ERK1/2 phosphorylation and MIP-1alpha gene expression. These data indicate that VLDL hydrolysis, and the subsequent accumulation of intracellular FFAs and TGs, plays a substantive role in mediating the proinflammatory effects of VLDL. These data have important implications for the direct proatherogenic effects of VLDL on macrophage-driven atherosclerosis.  相似文献   

8.
HDLc, a cholesterol-rich lipoprotein that accumulates in the plasma of cholesterol-fed swine, was shown to resemble functionally human and swine low density lipoprotein in its ability to bind to the low density lipoprotein receptor in monolayers of cultured human fibroblasts. This binding occurred even though HDLc lacked detectable apoprotein B, which is the major protein of low density lipoprotein. After it was bound to the low density lipoprotein receptor, HDLc, like human and swine low density lipoprotein, delivered its cholesterol to the cells, and this, in turn, caused a suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, an activation of the cholesterol-esterifying system, and a net accumulation of free and esterified cholesterol within the cells. Swine HDLc, like human high density lipoprotein, did not bind to the low density lipoprotein receptor nor did it elicit any of the subsequent metabolic events. HDLc, like human low density lipoprotein, was incapable of producing a metabolic effect in fibroblasts derived from a subject with the homozygous form of familial hypercholesterolemia, which lack low density lipoprotein receptors. These results indicate that two lipoproteins that have been associated with athersclerosis--low density lipoprotein in humans and HDLc in cholesterol-fed swine--both can cause the accumulation of cholesterol and cholesteryl esters within cells through an interaction with the low density lipoprotein receptor.  相似文献   

9.
This study attempted to determine if low density lipoproteins (LDL) induce the production of endothelins (ET) by human macrophages. Non-protected LDL from macrophage induced oxidation (n-LDL), copper-oxidized LDL (Ox-LDL), acetylated-LDL (Ac-LDL), butylated hydroxytoluene-LDL (BHT-LDL), BHT-Ac-LDL, polyinosinic acid (PiA, 1.5 micrograms/ml), phorbol myristate acetate (PMA; 0.5 microM) and BHT alone (20 microM) were studied. The different compounds had the following potency to stimulate the ET secretion: PMA greater than Ox-LDL greater than Ac-LDL greater than n-LDL greater than BHT-LDL greater than PiA greater than PiA + Ac-LDL greater than BHT. In conclusion, modified LDL stimulated ET secretion by human macrophages.  相似文献   

10.
Morphological characteristics of the interaction of low density lipoproteins (LDL) and acetylated low density lipoproteins (AcLDL) with rat liver cells are described. These liver cell types are mainly responsible for the catabolism of these lipoproteins in vivo. Isolated rat liver Kupffer, endothelial, and parenchymal cells were incubated with LDL or AcLDL conjugated to 20 nm colloidal gold. LDL was mainly internalized by Kupffer cells, whereas AcLDL was predominantly found in endothelial cells. Kupffer and endothelial cells displayed different morphological characteristics in the processing of these lipoproteins. Kupffer cells bound LDL at uncoated regions of the plasma membrane often at the base of pseudopodia, and internalized the particles via small smooth vesicles. These uptake characteristics differ from the classical LDL uptake pathway, as described for other cell types, and may be related to the unique recognition properties of the receptor of Kupffer cells as observed in biochemical studies. Liver endothelial cells bound AcLDL in coated pits, followed by rapid uptake. Uptake proceeded through small coated vesicles, and after 5 min of incubation large (600-1200 nm) electron-lucent vacuoles (endosomes) with AcLDL-gold particles arranged along the membrane region were present. The endosomes were often associated closely with the cell membrane which might enable direct recycling of AcLDL receptors. These observations might explain the high efficiency of these cells in the processing of modified LDL in vivo.  相似文献   

11.
Platelet-derived growth factor (PDGF) is secreted by several cells that participate in the process of atherogenesis, including arterial wall monocyte-derived macrophages. Macrophages in human and non-human primate lesions have recently been demonstrated to contain PDGF-B chain protein in situ. In developing lesions of atherosclerosis, macrophages take up and metabolize modified lipoproteins, leading to lipid accumulation and foam cell formation. Oxidatively modified low density lipoproteins (LDL) have been implicated in atherogenesis and have been demonstrated in atherosclerotic lesions. The effects of the uptake of various forms of modified LDL on PDGF gene expression, synthesis, and secretion in adherent cultures of human blood monocyte-derived macrophages were examined. LDL oxidized in a cell-free system in the presence of air and copper inhibited the constitutive expression of PDGF-B mRNA and secretion of PDGF in a dose-dependent fashion. Oxidatively modified LDL also attenuated lipopolysaccharide-induced PDGF-B mRNA expression. These changes were unrelated to the mechanism of lipid uptake and the degree of lipid loading and were detectable within 2 h of exposure to oxidized LDL. The degree of inhibition of both basal and lipopolysaccharide-induced PDGF-B-chain expression increased with the extent of LDL oxidation. Monocyte-derived macrophages exposed to acetylated LDL or LDL aggregates accumulated more cholesterol than cells treated with oxidized LDL, but PDGF expression was not consistently altered. Thus, uptake of a product or products of LDL oxidation modulates the expression and secretion of one of the principal macrophage-derived growth factors, PDGF. This modulation may influence chemotaxis and mitogenesis of smooth muscle cells locally in the artery wall during atherogenesis.  相似文献   

12.
In previous studies we reported that polymorphonuclear cell (PMN) elastase cleaves apoB-100 of human plasma low density lipoprotein (LDL) into seven or eight large Mr fragments (1, Polacek, D., R.E. Byrne, G.M. Fless, and A.M. Scanu. 1986. J. Biol. Chem. 261: 2057-2063). In the present studies we examined the interaction of native and elastase-digested LDL (ED-LDL) with primary cultures of human monocyte-derived macrophages (HMD-M). For this purpose LDL was digested with purified PMN elastase, re-isolated by ultracentrifugation at d 1.063 g/ml to remove the enzyme, and radiolabeled with 125I. At all LDL concentrations in the medium, the degradation of 125I-labeled ED-LDL was 1.5- to 2.5-fold greater than that of 125I-labeled native LDL, and for both lipoproteins species it was further enhanced by prior incubation of the cells in autologous lipoprotein-deficient serum (ALPDS). ED-LDL incubated with HMD-M in a medium containing [14C]oleate stimulated cholesteryl [14C]oleate formation 2- to 3-fold more than native LDL. In competitive degradation experiments, unlabeled ED-LDL did not inhibit the degradation of 125I-labeled acetylated LDL, whereas it caused a 90% inhibition of the degradation of 125I-labeled native LDL. At 4 degrees C, the binding of both 125I-labeled native and 125I-labeled ED-LDL was specific and of a high affinity. At saturation (Bmax), the binding of 125I-labeled ED-LDL was 2-fold higher (68 ng/mg cell protein) than that of 125I-labeled native LDL (31 ng/mg), with Kd values of 6.5 x 10(-8) M and 2.1 x 10(-8) M, respectively. A possible explanation of the binding data was provided by electrophoretic analyses suggesting that ED-LDL was twice the size of native LDL and thus potentially capable of delivering proportionately more cholesterol to the cells. Taken together, the results indicate that 1) digestion of LDL by purified PMN elastase results in a greater mass of ED-LDL (relative to native LDL) being degraded per unit time by HMD-M; 2) uptake of ED-LDL occurs via the LDL receptor; and 3) LDL digested by PMN elastase undergoes a physical change that may be responsible for its unique interactions with HMD-M. We speculate that if this process were to occur in vivo during an inflammatory process, macrophages could acquire excess cholesterol and be transformed into foam cells which are considered to be precursors of the atherosclerotic process.  相似文献   

13.
In normal human monocyte macrophages 125I-labeled beta-migrating very low density lipoproteins (125I-beta-VLDL), isolated from the plasma of cholesterol-fed rabbits, and 125I-human low density lipoprotein (LDL) were degraded at similar rates at protein concentrations up to 50 micrograms/ml. The high affinity degradation of 125I-labeled human LDL saturated at approximately 50 micrograms/ml; however, 125I-labeled rabbit beta-VLDL high affinity degradation saturated at 100-120 micrograms/ml. The activity of the beta-VLDL receptor was 3-fold higher than LDL receptor activity on freshly isolated normal monocyte macrophages, but with time-in-culture both receptor activities decreased and were similar after several days. The degradations of both beta-VLDL and LDL were Ca2+ sensitive, were markedly down regulated by sterols, and were up regulated by preincubation of the cells in a lipoprotein-free medium. The beta-VLDL receptor is genetically distinct from the LDL receptor as indicated by its presence on monocyte macrophages from a familial hypercholesterolemic homozygote. Human thoracic duct lymph chylomicrons as well as lipoproteins of Sf 20-5000 from fat-fed normal subjects inhibited the degradation of 125I-labeled rabbit beta-VLDL as effectively as nonradioactive rabbit beta-VLDL. We conclude: 1) the beta-VLDL receptor is genetically distinct from the LDL receptor, and 2) intestinally derived human lipoproteins are recognized by the beta-VLDL receptor on macrophages.  相似文献   

14.
The receptor-mediated uptake of rat hypercholesterolemic very low density lipoproteins (beta VLDL) and rat chylomicron remnants was studied in monolayer cultures of the J774 and P388D1 macrophage cell lines and in primary cultures of mouse peritoneal macrophages. Uptake of 125I-beta VLDL and 125I-chylomicron remnants was reduced 80-90% in the presence of high concentrations of unlabeled human low density lipoproteins (LDL). Human acetyl-LDL did not significantly compete at any concentration tested. Uptake of 125I-beta VLDL and 125I-chylomicron remnants was also competitively inhibited by specific polyclonal antibodies directed against the estrogen-induced LDL receptor of rat liver. Incubation in the presence of anti-LDL receptor IgG, but not nonimmune IgG, reduced specific uptake greater than 80%. Anti-LDL receptor IgG, 125I-beta VLDL, and 125I-chylomicron remnants bound to two protein components of apparent molecular weights 125,000 and 111,000 on nitrocellulose blots of detergent-solubilized macrophage membranes. Between 70-90% of 125I-lipoprotein binding was confined to the 125,000-Da peptide. Binding of 125I-beta VLDL and 125I-chylomicron remnants to these proteins was competitively inhibited by anti-LDL receptor antibodies. Comparison of anti-LDL receptor IgG immunoblot profiles of detergent-solubilized membranes from mouse macrophages, fibroblasts, and liver, and normal and estrogen-induced rat liver demonstrated that the immunoreactive LDL receptor of mouse cells is of a lower molecular weight than that of rat liver. Incubation of J774 cells with 1.0 micrograms of 25-hydroxycholesterol/ml plus 20 micrograms of cholesterol/ml for 48 h decreased 125I-beta VLDL uptake and immuno- and ligand blotting to the 125,000- and 111,000-Da peptides by only 25%. Taken together, these data demonstrate that uptake of beta VLDL and chylomicron remnants by macrophages is mediated by an LDL receptor that is immunologically related to the LDL receptor of rat liver.  相似文献   

15.
Successive rechromatography of commercial bovine lung heparin on human plasma low density lipoproteins (LDL) immobilized to AffiGel-10 yielded four high reactive heparin (HRH-I to IV) fractions and an unreactive fraction (URH). HRH-I was the most sulphated HRH fraction whereas URH had the least sulphation. In the presence of 10 mM Ca2+, LDL were precipitated by these heparins in the following order: HRH-II greater than HRH-III greater than HRH-IV greater than HRH-I greater than URH. The average molecular weight of HRH-I to IV was 8600, 11400, 10,100, and 10,000, respectively. A plot of log molecular weight versus the concentration of HRH required to give half-maximal precipitation of LDL showed a negative correlation (r = -0.880). These results indicate that heparin chain length is an important determinant of heparin binding to LDL in solution and may have relevance to the binding and precipitation of LDL in the arterial wall.  相似文献   

16.
The receptor on mouse peritoneal macrophages that mediates the uptake of canine beta-very low density lipoproteins (beta-VLDL) has been identified in this study as an unusual apolipoprotein (apo-) B,E(LDL) receptor. Ligand blots of Triton X-100 extracts of mouse peritoneal macrophages using 125I-beta-VLDL identified a single protein. This protein cross-reacted with antibodies against bovine apo-B,E(LDL) receptors, but its apparent Mr was approximately 5,000 less than that of the human apo-B,E(LDL) receptor. Binding studies at 4 degrees C demonstrated specific and saturable binding of low density lipoproteins (LDL), beta-VLDL, and cholesterol-induced high density lipoproteins in plasma that contain apo-E as their only protein constituent (apo-E HDLc) to mouse macrophages. Apolipoprotein E-containing lipoproteins (beta-VLDL and apo-E HDLc) bound to mouse macrophages and human fibroblasts with the same high affinity. However, LDL bound to mouse macrophages with an 18-fold lower affinity than to human fibroblasts. Mouse fibroblasts also bound LDL with a similar low affinity. Compared with the apo-B,E(LDL) receptors on human fibroblasts, the apo-B,E(LDL) receptors on mouse macrophages were resistant to down-regulation by incubation of the cells with LDL or beta-VLDL. There are three lines of evidence that an unusual apo-B,E(LDL) receptor on mouse peritoneal macrophages mediates the binding and uptake of beta-VLDL: LDL with residual apo-E removed displaced completely the 125I-beta-VLDL binding to mouse macrophages, preincubation of the mouse macrophages with apo-B,E(LDL) receptor antibody inhibited both the binding of beta-VLDL and LDL to the cells and the formation of beta-VLDL- and LDL-induced cholesteryl esters, and binding of 125I-beta-VLDL to the cells after down-regulation correlated directly with the amount of mouse macrophage apo-B,E(LDL) receptor as determined on immunoblots. This unusual receptor binds LDL poorly, but binds apo-E-containing lipoproteins with normal very high affinity and is resistant to down-regulation by extracellular cholesterol.  相似文献   

17.
Micromolar concentrations of oleate were found to inhibit reversibly the binding of low density lipoprotein (LDL) to the human fibroblast LDL receptor. The decrease in LDL binding caused a parallel reduction of both 125I-LDL uptake and degradation at 37 degrees C. At 4 degrees C, oleate was also found to displace 125I-LDL already bound to the LDL receptor. The effect of oleate was rapid, reaching 70-80% of maximum displacement with 5-10 min of incubation, and was closely correlated to oleate-albumin molar ratios. Partition analysis of unesterified fatty acids between cells and LDL showed that the inhibitory effect of oleate resulted mainly from an interaction of unesterified fatty acids with the cell surface rather than with the LDL particles. Using different unesterified fatty acids and fatty acid analogs, we found that the inhibitory effect was modulated by both the length and the conformation of the monomeric carbon chain and was directly dependent on the presence of a negative charge on the carboxylic group. At 4 degrees C, the inhibitory effect of oleate never exceeded half of maximum binding capacity. This limitation was associated with the ability of oleate to interact only with part of the population of LDL receptors which spontaneously recycles in the absence of ligand, as demonstrated by the fact that oleate did not induce any reduction of LDL binding after cell treatment with monensin in the absence of LDL. Our results indicate that unesterified fatty acids could participate in the control of LDL catabolism in vivo by direct modulation of the ability of LDL receptor to bind LDL.  相似文献   

18.
19.
Intravenous injection of acetylated low density lipoproteins (acLDL) in mice in a dose of 0.5 mg per mouse decreased the intensity of humoral immune response to sheep red blood cells (SRBC) by 35%. The addition of acLDL to mouse peritoneal macrophages in vitro resulted in inhibition of Fc-dependent phagocytosis of SRBC and fourfold increased secretion of prostaglandins E2 by macrophages. Fc-dependent phagocytosis of SRBC was also found to be inhibited by oxysterols (25-hydroxycholesterol and 7-ketocholesterol), added to the incubation medium of macrophages in vitro in doses of 0.5-5 mg/ml. The conclusion was made that oxidative metabolism of cholesterol and arachidonic acid, contained in LDL, may mediate the immunomodulating effects of modified LDL.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号