Abstract: | Frictional models for membrane transport are tested experimentally and theoretically for the simple case of a solution consisting of a mixture of two perfect gases and a membrane consisting of a porous graphite septum. Serious disagreement is found, which is traced to a missing viscous term. Kinetic theory is then used as a guide in formulating a corrected set of transport equations, and in giving a physical interpretation to the frictional coefficients. Sieving effects are found to be attributable to entrance effects rather than to true frictional effects within the body of the membrane. The results are shown to be compatible with nonequilibrium thermodynamics. Some correlations and predictions are made of the behavior of various transport coefficients for general solutions. |