首页 | 本学科首页   官方微博 | 高级检索  
     


The Fibrinogen Molecule: Its Size, Shape, and Mode of Polymerization
Authors:Cecil E. Hall and Henry S. Slayter
Affiliation:From the Department of Biology, Massachusetts Institute of Technology, Cambridge
Abstract:Improved electron micrographs of the shadow-cast bovine fibrinogen molecule have been obtained establishing its general morphology and dimensions in the dry state. It consists of a linear array of 3 nodules held together by a very thin thread which is estimated to have a diameter of from 8 to 15 A, though it is not clearly resolved. The two end nodules are alike but the center one is slightly smaller. Measurements of shadow lengths indicate that nodule diameters are in the range 50 to 70 A. The length of the dried molecule is 475 ± 25 A. Adopting the molecular volume from previous physical chemical data and the general morphological features and length from electron microscopy, we calculate the diameters of the end nodules to be 65 A and the center one as 50 A. The model of the molecule so obtained is consistent with the electron microscopical observations and the data from physical chemistry. The intermediate polymers formed when fibrinogen is activated with thrombin were also examined and found to be end-to-end aggregates of altered fibrinogen molecules which shrink in length during the process. Intermediate polymer lengths are from 1000 to 5000 A. The nodular nature of fibrinogen, its shrinkage and end-to-end aggregation on polymerization permits us to deduce an explanation for the system of cross-bands previously observed in stained fibrin fibrils.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号