Expression of Engineered Nuclear Male Sterility in Brassica napus (Genetics,Morphology, Cytology,and Sensitivity to Temperature) |
| |
Authors: | Denis M. Delourme R. Gourret J. P. Mariani C. Renard M. |
| |
Affiliation: | Institut National de la Recherche Agronomique, Centre de Recherche de Rennes, Station d'Amelioration des Plantes, BP 29, 35650 Le Rheu, France (M.D., R.D., M.R.). |
| |
Abstract: | A dominant genetic male sterility trait obtained through transformation in rapeseed (Brassica napus) was studied in the progenies of 11 transformed plants. The gene conferring the male sterility consists of a ribonuclease gene under the control of a tapetum-specific promoter. Two ribonuclease genes, RNase T1 and barnase, were used. The chimaeric ribonuclease gene was linked to the bialophos-resistance gene, which confers resistance to the herbicide phosphinotricine (PPT). The resistance to the herbicide was used as a dominant marker for the male sterility trait. The study presented here concerns three aspects of this engineered male sterility: genetics correlated with the segregation of the T-DNA in the progenies; expression of the male sterility in relation to the morphology and cytology of the androecium; and stability of the engineered male sterility under different culture conditions. Correct segregation, 50% male-sterile, PPT-resistant plants, and 50% male-fertile, susceptible plants were observed in the progeny of seven transformants. The most prominent morphological change in the male-sterile flowers was a noticeable reduction in the length of the stamen filament. The first disturbances of microsporogenesis were observed from the free microspore stage and were followed by a simultaneous degeneration of microspore and tapetal cell content. At anthesis, the sterile anthers contained only empty exines. In some cases, reversion to fertility of male-sterile plants has been observed. Both ribonuclease genes are susceptible to instability. Instability of the RNase T1-male sterility trait increased at temperatures higher than 25[deg] C. Our results do not allow us to confirm this observation for the barnase male-sterile plants. However, the male-sterile plants of the progeny of two independent RNase T1 transformants were stably male sterile under all conditions studied. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|