Protein variants in Hiroshima and Nagasaki: tales of two cities. |
| |
Authors: | J V Neel C Satoh P Smouse J Asakawa N Takahashi K Goriki M Fujita T Kageoka R Hazama |
| |
Affiliation: | Department of Human Genetics, University of Michigan Medical School, Ann Arbor 48109. |
| |
Abstract: | The results of 1,465,423 allele product determinations based on blood samples from Hiroshima and Nagasaki, involving 30 different proteins representing 32 different gene products, are analyzed in a variety of ways, with the following conclusions: (1) Sibships and their parents are included in the sample. Our analysis reveals that statistical procedures designed to reduce the sample to equivalent independent genomes do not in population comparisons compensate for the familial cluster effect of rare variants. Accordingly, the data set was reduced to one representative of each sibship (937,427 allele products). (2) Both chi 2-type contrasts and a genetic distance measure (delta) reveal that rare variants (P less than .01) are collectively as effective as polymorphisms in establishing genetic differences between the two cities. (3) We suggest that rare variants that individually exhibit significant intercity differences are probably the legacy of tribal private polymorphisms that occurred during prehistoric times. (4) Despite the great differences in the known histories of the two cities, both the overall frequency of rare variants and the number of different rare variants are essentially identical in the two cities. (5) The well-known differences in locus variability are confirmed, now after adjustment for sample size differences for the various locus products; in this large series we failed to detect variants at only three of 29 loci for which sample size exceeded 23,000. (6) The number of alleles identified per locus correlates positively with subunit molecular weight. (7) Loci supporting genetic polymorphisms are characterized by more rare variants than are loci at which polymorphisms were not encountered. (8) Loci whose products do not appear to be essential for health support more variants than do loci the absence of whose product is detrimental to health. (9) There is a striking excess of rare variants over the expectation under the neutral mutation/drift/equilibrium theory. We suggest that this finding is primarily due to the relatively recent (in genetic time) agglomeration of previously separated tribal populations; efforts to test for agreement with the expectations of this theory by using data from modern cosmopolitan populations are exercises in futility. (10) All of these findings should characterize DNA variants in exons as more data become available, since the finding are the protein expression of such variants. |
| |
Keywords: | |
|
|