首页 | 本学科首页   官方微博 | 高级检索  
     


Primary events regulating stem growth at low water potentials
Authors:Nonami H  Boyer J S
Affiliation:College of Marine Studies, University of Delaware, Lewes, Delaware 19958.
Abstract:Cell enlargement is inhibited by inadequate water. As a first step toward understanding the mechanism, all the physical parameters affecting enlargement were monitored to identify those that changed first, particularly in coincidence with the inhibition. The osmotic potential, turgor, yield threshold turgor, growth-induced water potential, wall extensibility, and conductance to water were measured in the elongating region, and the water potential was measured in the xylem of stems of dark-grown soybean (Glycine max [L.] Merr.) seedlings. A stepdown in water potential was achieved around the roots by transplanting the seedlings to vermiculite of low water content, and each of the parameters was measured simultaneously in the same plants while intact or within a few minutes of being intact using a newly developed guillotine psychrometer. The gradient of decreasing water potential from the xylem to the enlarging cells (growth-induced water potential) was the first of the parameters to decrease to a growth-limiting level. The kinetics were the same as for the inhibition of growth. The decreased gradient was caused mostly by a decreased water potential of the xylem. This was followed after 5 to 10 hours by a similar decrease in cell wall extensibility and tissue conductance for water. Later, the growth-induced water potential recovered as a result of osmotic adjustment and a rise in the water potential of the xylem. Still later, moderate growth resumed at a rate apparently determined by the low wall extensibility and tissue conductance for water. The turgor did not change significantly during the experiment. These results indicate that the primary event during the growth inhibition was the change in the growth-induced water potential. Because the growth limitation subsequently shifted to the low wall extensibility and tissue conductance for water, the initial change in potential may have set in motion subsequent metabolic changes that altered the characteristics of the wall and cell membranes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号