Influence of the route of infection on development of T-cell receptor beta-chain repertoires of reovirus-specific cytotoxic T lymphocytes |
| |
Authors: | Fulton Jonathan R Smith Jeremy Cunningham Cynthia Cuff Christopher F |
| |
Affiliation: | Department of Microbiology, Immunology, and Cell Biology, Robert C. Byrd Health Sciences Center of West Virginia University, Morgantown, West Virginia 26506, USA. |
| |
Abstract: | It is well established that the route of infection affects the nature of the adaptive immune response. However, little is known about the effects of the route of exposure on development of cytotoxic T-lymphocyte (CTL) responses. Alternative antigen-presenting cell populations, tissue-restricted expression of class I major histocompatibility complex-encoded molecules, and unique T-cell receptor (TCR)-bearing cells in mucosal tissues could influence the selection and expansion of responder T cells. This study addresses the question of whether the route of virus infection affects the selection and expansion of subpopulations of virus-specific CTLs. Mice were infected orally or in the hind footpads with reovirus, and the repertoires of TCR beta-chains expressed on virus-specific CD8(+) T cells in Peyer's patches or lymph nodes and spleens were examined. CD8(+) cells expressing the variable gene segment of the TCR beta-chain 6 (Vbeta6) expanded in the spleens of mice infected by either route and in CTL lines established from the spleens and draining lymphoid tissues. Adoptively transferred Vbeta6(+) CD8(+) T cells from orally or parenterally infected donors expanded in reovirus-infected severe combined immunodeficient recipient mice and mediated cytotoxicity ex vivo. Furthermore, recovered Vbeta6(+) cells were enriched for clones utilizing uniform complementarity-determining region 3 (CDR3) lengths. However, sequencing of CDR3beta regions from Vbeta6(+) CD8(+) cells indicated that Jbeta gene segment usage is significantly more restricted in CTLs from orally infected mice, suggesting that the route of infection affects selection and/or subsequent expansion of virus-specific CTLs. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|