首页 | 本学科首页   官方微博 | 高级检索  
     


The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots
Authors:Aroca Ricardo  Amodeo Gabriela  Fernández-Illescas Silvia  Herman Eliot M  Chaumont François  Chrispeels Maarten J
Affiliation:Division of Biological Sciences, University of California at San Diego, La Jolla, California, 92093-0116, USA. raroca@biomail.ucsd.edu
Abstract:When chilling-sensitive plants are chilled, root hydraulic conductance (L(o)) declines precipitously; L(o) also declines in chilling-tolerant plants, but it subsequently recovers, whereas in chilling-sensitive plants it does not. As a result, the chilling-sensitive plants dry out and may die. Using a chilling-sensitive and a chilling-tolerant maize genotype we investigated the effect of chilling on L(o), and its relationship to osmotic water permeability of isolated root cortex protoplasts, aquaporin gene expression, aquaporin abundance, and aquaporin phosphorylation, hydrogen peroxide (H(2)O(2)) accumulation in the roots and electrolyte leakage from the roots. Because chilling can cause H(2)O(2) accumulation we also determined the effects of a short H(2)O(2) treatment of the roots and examined the same parameters. We conclude from these studies that the recovery of L(o) during chilling in the chilling-tolerant genotype is made possible by avoiding or repairing membrane damage and by a greater abundance and/or activity of aquaporins. The same changes in aquaporins take place in the chilling-sensitive genotype, but we postulate that membrane damage prevents the L(o) recovery. It appears that the aquaporin response is necessary but not sufficient to respond to chilling injury. The plant must also be able to avoid the oxidative damage that accompanies chilling.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号