Identification of a Human Immunodeficiency Virus Type 2 (HIV-2) Encapsidation Determinant and Transduction of Nondividing Human Cells by HIV-2-Based Lentivirus Vectors |
| |
Authors: | Eric Poeschla James Gilbert Xinqiang Li Shiang Huang Anthony Ho Flossie Wong-Staal |
| |
Affiliation: | Departments of Medicine1. and Biology,2. University of California at San Diego, La Jolla, California 92093-0665 |
| |
Abstract: | Although previous lentivirus vector systems have used human immunodeficiency virus type 1 (HIV-1), HIV-2 is less pathogenic in humans and is amenable to pathogenicity testing in a primate model. In this study, an HIV-2 molecular clone that is infectious but apathogenic in macaques was used to first define cis-acting regions that can be deleted to prevent HIV-2 genomic encapsidation and replication without inhibiting viral gene expression. Lentivirus encapsidation determinants are complex and incompletely defined; for HIV-2, some deletions between the major 5′ splice donor and the gag open reading frame have been shown to minimally affect encapsidation and replication. We find that a larger deletion (61 to 75 nucleotides) abrogates encapsidation and replication but does not diminish mRNA expression. This deletion was incorporated into a replication-defective, envelope-pseudotyped, three-plasmid HIV-2 lentivirus vector system that supplies HIV-2 Gag/Pol and accessory proteins in trans from an HIV-2 packaging plasmid. The HIV-2 vectors efficiently transduced marker genes into human T and monocytoid cell lines and, in contrast to a murine leukemia virus-based vector, into growth-arrested HeLa cells and terminally differentiated human macrophages and NTN2 neurons. Vector DNA could be detected in HIV-2 vector-transduced nondividing CD34+ CD38− human hematopoietic progenitor cells but not in those cells transduced with murine vectors. However, stable integration and expression of the reporter gene could not be detected in these hematopoietic progenitors, leaving open the question of the accessibility of these cells to stable lentivirus transduction. |
| |
Keywords: | |
|
|