Abstract: | The excised group II intron bI1 from Saccharomyces cerevisiae can act as a ribozyme catalysing various chemical reactions with different substrate RNAs in vitro . Recently, we have described an editing-like RNA polymerization reaction catalysed by the bI1 intron lariat that proceeds in the 3'-->5'direction. Here we show that the bI1 lariat RNA can also catalyse successive deoxyribonucleotide polymerization reactions on exogenous substrate molecules. The basic mechanism of the reaction involved interacting cycles between an alternative version of partial reverse splicing (lariat charging) and canonical forward splicing (lariat discharging by exon ligation). With an overall chain growth in the 3'-->5' direction, the 5' exon RNAs (IBS1dN) were elongated by successive insertion of deoxyribonucleotides derived from single deoxyribonucleotide substitutions (dA, dG, dC or dT). All four deoxyribonucleotides were used as substrates, although with different efficiencies. Our findings extend the catalytic repertoire of group II intron RNAs not only by a novel DNA polymerization activity, but also by a DNA-DNA ligation capacity, supporting the idea that ribozymes might have been part of the first primordial polymerization machinery for both RNA and DNA. |