Abstract: | Direct spectroscopic measurements of rotational motions of proteins and large protein segments are crucial to understanding the molecular dynamics of protein function. Fluorescent probes and spin labels attached to proteins have proved to be powerful tools in the study of large-scale protein motions. Fluorescence depolarization and conventional electron paramagnetic resonance (EPR) are applicable to the study of rotational motions in the nanosecond-to-microsecond time range, and have been used to demonstrate segmental flexibility in an antibody and in myosin. Very slow rotational motions, occurring in the microsecond-to-millisecond time range, are particularly important in supramolecular assemblies, where protein motions are restricted by association with other molecules. Saturation transfer spectroscopy (ST-EPR), a recently developed electron paramagnetic resonance (EPR) technique that permits the detection of rotational correlation times as long as 1 ms, has been used to detect large-scale rotational motions of spin-labeled proteins in muscle filaments and in membranes, providing valuable insights into energy transduction mechanisms in these assemblies. |