首页 | 本学科首页   官方微博 | 高级检索  
     


Bacteriophage T4 Virion Dihydrofolate Reductase: Approaches to Quantitation and Assessment of Function
Authors:Richard A. Mosher   Anthony B. DiRenzo     Christopher K. Mathews
Affiliation:Department of Biochemistry, College of Medicine, University of Arizona, Tucson, Arizona 85724
Abstract:This paper is concerned with the physiological role(s) of T4 phage-coded dihydrofolate reductase, which functions both in DNA precursor metabolism and as a virion protein. (i) We have detected enzyme activity in noninfectious particles produced under restrictive conditions by gene 11 mutants. This supports the conclusion of Kozloff et al. (J. Virol. 16:1401-1408, 1975) that the protein lies in the baseplate, covered by the gene 11 protein. (ii) We have obtained further evidence for virion dihydrofolate reductase as the target for neutralizing activity of T4 dihydrofolate reductase antiserum and as a determinant of the heat lability of the virion. This derives from our observation that the reductases specified by T4B and T4D differ in several properties. (iii) We have investigated several anomalous properties of T4 mutants bearing deletions that reportedly extend into or through the frd gene, which codes for dihydrofolate reductase. Evidence is presented that the deletions in fact do not extend through frd. These strains direct the synthesis of material that cross-reacts with antiserum to homogeneous dihydrofolate reductase. Moreover, they are all quite sensitive to the phage-neutralizing effects of this antiserum. In addition, they are restricted by several of the hospital strains, wild-type strains of Escherichia coli supplied by the California Institute of Technology group. (iv) We have attempted to detect dihydrofolate reductase among early-synthesized proteins present in T4 tails. Two such proteins are seen, one of which is evidently the gene 25 product and one that is a bacterial protein. Quantitation of our electrophoretic technique has allowed determination of the number of molecules of some T4 tail components present per virion. (v) Finally, we have compared the T4 dihydrofolate reductase with the corresponding enzyme specified by two plasmids conferring resistance to trimethoprim (Skold and Widh, J. Biol. Chem. 249:4324-4325, 1974). Although the enzymes are similar in some properties, they differ in several important respects, including immunological activity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号