Nitrate absorption by corn roots : inhibition by phenylglyoxal |
| |
Authors: | Dhugga K S Waines J G Leonard R T |
| |
Affiliation: | Department of Botany and Plant Sciences, University of California, Riverside, California 92521-0124. |
| |
Abstract: | Nitrate transport in excised corn (Zea mays L.) roots was inhibited by phenylglyoxal, but not by 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid (DIDS) or fluorescein isothiocyanate (FITC). Inhibition of nitrate uptake by a 1-hour treatment with 1 millimolar phenylglyoxal was reversed after 3 hours, which was similar to the time needed for induction of nitrate uptake. If induction of nitrate uptake occurs by de novo synthesis of a nitrate carrier, then the resumption of nitrate uptake in the inhibitor-treated roots may occur because of turnover of phenylglyoxal-inactivated nitrate carrier proteins. All three chemicals inhibited chloride uptake to varying degrees, with FITC being the strongest inhibitor. While inhibition due to DIDS was reversible within 30 minutes, both FITC and phenylglyoxal showed continued inhibition of chloride uptake for up to 3 hours after removal from the uptake solution. Assuming that the anion transporter polypeptide(s) carries a positive charge density at or near the transport site, the results indicate that the nitrate carrier does not carry any lysyl residues that are accessible to DIDS or FITC, whereas the chloride carrier does. Both chloride and nitrate carriers, however, seem to possess arginyl residues that are accessible to phenylglyoxal. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|