首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular evolution and population genetic analysis of candidate female reproductive genes in Drosophila
Authors:Panhuis Tami M  Swanson Willie J
Affiliation:Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. tpanhuis@jsd.claremont.edu
Abstract:Molecular analyses in several taxa have consistently shown that genes involved in reproduction are rapidly evolving and subjected to positive selection. The mechanism behind this evolution is not clear, but several proposed hypotheses involve the coevolution between males and females. In Drosophila, several male reproductive proteins (Acps) involved in male-male and male-female interactions show evidence of rapid adaptive evolution. What has been missing from the Drosophila literature is the identification and analysis of female reproductive genes. Recently, an evolutionary expressed sequence tag analysis of Drosophila female reproductive tract genes identified 169 candidate female reproductive genes. Many of these candidate genes still await further molecular analysis and independent verification of positive selection. Our goal was to expand our understanding of the molecular evolution of Drosophila female reproductive genes with a detailed polymorphism and divergence study on seven additional candidate female reproductive genes and a reanalysis of two genes from the above study. We demonstrate that 6 candidate female genes of the 9 genes surveyed show evidence of positive selection using both polymorphism and divergence data. One of these proteins (CG17012) is modeled to reveal that the sites under selection fall around and within the active site of this protease, suggesting potential differences between species. We discuss our results in light of potential function as well as interaction with male reproductive proteins.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号