首页 | 本学科首页   官方微博 | 高级检索  
     


Qiliqiangxin protects against anoxic injury in cardiac microvascular endothelial cells via NRG‐1/ErbB‐PI3K/Akt/mTOR pathway
Authors:Jingfeng Wang  Jingmin Zhou  Yanyan Wang  Chunjie Yang  Mingqiang Fu  Jingjing Zhang  Xueting Han  Zhiming Li  Kai Hu  Junbo Ge
Affiliation:1. Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China;2. Department of Cardiology, Shandong University, Jinan, Shandong, China;3. Department of Cardiology, People's Hospital of Nanbu County, Nanchong, Sichuan, China
Abstract:Cardiac microvascular endothelial cells (CMECs) are important angiogenic components and are injured rapidly after cardiac ischaemia and anoxia. Cardioprotective effects of Qiliqiangxin (QL), a traditional Chinese medicine, have been displayed recently. This study aims to investigate whether QL could protect CMECs against anoxic injury and to explore related signalling mechanisms. CMECs were successfully cultured from Sprague‐Dawley rats and exposed to anoxia for 12 hrs in the absence and presence of QL. Cell migration assay and capillary‐like tube formation assay on Matrigel were performed, and cell apoptosis was determined by TUNEL assay and caspase‐3 activity. Neuregulin‐1 (NRG‐1) siRNA and LY294002 were administrated to block NRG‐1/ErbB and PI3K/Akt signalling, respectively. As a result, anoxia inhibited cell migration, capillary‐like tube formation and angiogenesis, and increased cell apoptosis. QL significantly reversed these anoxia‐induced injuries and up‐regulated expressions of NRG‐1, phospho‐ErbB2, phospho‐ErbB4, phospho‐Akt, phospho‐mammalian target of rapamycin (mTOR), hypoxia‐inducible factor‐1α (HIF‐1α) and vascular endothelial growth factor (VEGF) in CMECs, while NRG‐1 knockdown abolished the protective effects of QL with suppressed NRG‐1, phospho‐ErbB2, phospho‐ErbB4, phospho‐Akt, phospho‐mTOR, HIF‐1α and VEGF expressions. Similarly, LY294002 interrupted the beneficial effects of QL with down‐regulated phospho‐Akt, phospho‐mTOR, HIF‐1α and VEGF expressions. However, it had no impact on NRG‐1/ErbB signalling. Our data indicated that QL could attenuate anoxia‐induced injuries in CMECs via NRG‐1/ErbB signalling which was most probably dependent on PI3K/Akt/mTOR pathway.
Keywords:   Qiliqiangxin     cardiac microvascular endothelial cell  neuregulin  anoxia  angiogenesis  apoptosis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号