Alkyl phosphotriester modified oligodeoxyribonucleotides. VI. NMR and UV spectroscopic studies of ethyl phosphotriester (Et) modified Rp-Rp and Sp-Sp duplexes, (d[GGAA(Et)TTCC])2. |
| |
Authors: | M F Summers C Powell W Egan R A Byrd W D Wilson G Zon |
| |
Abstract: | 1H NMR chemical shift assignments for the title compounds were made for all but a few H5' and H5" signals using two-dimensional nuclear Overhauser effect (2D-NOE) data, which was also used for the first time to assign absolute configuration at phosphorus. The chemical shifts were, in general, similar to those reported [Broido, M.S., et al. (1985) Eur. J. Biochem. 150, 117-128] for the B-like conformation of the unmodified, parent duplex, [d(GGAATTCC)]2. Differences in chemical shifts for corresponding protons were mostly localized to the AA(Et)TT region, and showed some stereochemical dependence. Unambiguous assignment of the phosphotriester 31P signals was achieved in a novel way using selective insensitive nucleus enhancement by polarization transfer (selective INEPT) NMR. The Rp-Rp duplex melted ca. 11 degrees C lower than either the Sp-Sp or parent duplexes, as evidenced by Tm and variable temperature 1H/31P NMR measurements. The 2D-NOE data for the Rp-Rp duplex suggested possible steric interactions between the ethyl group and the H3' of the flanking A residue. At low ionic strength, the Sp-Sp and parent duplexes had similar stability but at high ionic strength the Sp-Sp duplex was less stable. |
| |
Keywords: | |
|
|