Abstract: | The relative antimicrobial activity of a large series of semisynthetic coumermycins has been determined. Most of the derivatives, which were 3-substituted-4-hydroxy-8-methyl-7-[3-O-(5-methyl-2-pyrrolylcarbonyl) noviosyloxy] coumarins, had an in vitro antibacterial spectrum similar to that of the parent compound, coumermycin A(1), but were generally less potent in minimal inhibitory concentration (MIC) tests. Derivatives with an alkylcarboxamido, arylcarboxamido, or arylsulfonamido group in the 3 position had considerably greater in vitro activity than those possessing an amino-, aryl-, or alkyureido substituent. Efficacy in Staphylcoccous aureus Smith infections of mice was greater for those compounds with branched-chain alkylcarboxamido, unsubstituted, mono- or disubstituted aryl- and heteroaryl-carboxamido groups than for derivatives having an n-alkylcarboxamido, aralkyl-carboxamido, arylsulfonamido, or trisubstituted arylcarboxamido substituent. Significant in vitro activity against Klebsiella pneumoniae and other gram-negative species was restricted to those compounds having a 3-(3-n-alkyl-4-hydroxy-phenyl-carboxamido) group. Only the n-hexyl homologue demonstrated in vivo activity in a K. pneumoniae infection. Many derivatives were two- to threefold more active than coumermycin A(1) in orally treated mouse infections, despite the fact that their MIC values were considerably higher. This result was undoubtedly a reflection of the markedly greater oral absorbability possessed by many of the derivatives. Although peak oral mouse blood levels of some compounds were > 25 times higher than those of coumermycin A(1), their toxicity for the host was no greater. In addition, the semisynthetic coumermycins caused much less local irritation than coumermycin A(1) when administered parenterally. |