首页 | 本学科首页   官方微博 | 高级检索  
     


Calcium measurements in perfused mouse heart: quantitating fluorescence and absorbance of Rhod-2 by application of photon migration theory
Authors:Du C  MacGowan G A  Farkas D L  Koretsky A P
Affiliation:Center for Light Microscope Imaging & Biotechnology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA. congwu@andrew.cmu.edu
Abstract:Both theoretical and experimental results are presented for the quantitative detection of calcium transients in the perfused mouse heart loaded with the calcium-sensitive fluorescent dye Rhod-2. Analytical models are proposed to calculate both the reflected absorbance and fluorescence spectra detected from the mouse heart. These models allow correlation of the measured spectral intensities with the relative quantity of Rhod-2 in the heart and measurement of the changes in quantum yield of Rhod-2 upon binding calcium in the heart in which multiple scattering effects are predominant. Theoretical modeling and experimental results demonstrate that both reflected absorbance and fluorescence emission are attenuated linearly with Rhod-2 washout. According to this relation, a ratiometric method using fluorescence and absorbance is validated as a measure of the quantum yield of calcium-dependent fluorescence, enabling determination of the dynamics of cytosolic calcium in the perfused mouse heart. The feasibility of this approach is confirmed by experiments quantifying calcium transients in the perfused mouse heart stimulated at 8 Hz. The calculated cytosolic calcium concentrations are 368 +/- 68 nM and 654 +/- 164 nM in diastole and systole, respectively. Spectral distortions induced by tissue scattering and absorption and errors induced by the geometry of the detection optics in the calcium quantification are shown to be eliminated by using the ratio method. Methods to effectively minimize motion-induced artifacts and to monitor the oxygenation status of the whole perfused heart are also discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号