Radial transport of sodium and chloride into tomato root xylem |
| |
Authors: | Maas E V Ogata G |
| |
Affiliation: | United States Salinity Laboratory, Soil and Water Conservation Research Division, Agricultural Research Service, United States Department of Agriculture, Riverside, California 92502. |
| |
Abstract: | Transport of Na and Cl across exuding tomato (Lycopersicon esculentum Mill.) roots was determined as a function of ambient NaCl concentrations in the ranges of both systems 1 and 2. Kinetics of radial transport under steady-state conditions and the effect of dinitrophenol indicate that Na and Cl were transported by two different mechanisms. Sodium was neither accumulated against a concentration gradient nor directly inhibited by dinitrophenol from diffusing into the xylem. Chloride was accumulated in the xylem and its transport was nearly completely blocked by dinitrophenol. A comparison of the radial transport isotherms for Na and Cl for intact and decapitated plants indicates that the separate mechanisms were not unique to excised roots. It is concluded that radial Na transport in tomatoes was facilitated by a passive convective type process with the rate-limiting barrier located at the outer cortical plasmalemma. Chloride transport in both concentration ranges involved, either directly or indirectly, a metabolic mechanism. Absorption and retention of Na in the root tissue was negligible. Chloride was accumulated by the tissue but was unaffected by dinitrophenol. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|