首页 | 本学科首页   官方微博 | 高级检索  
     

数据融合快速鉴别9种野生食用牛肝菌
引用本文:李秀萍,李杰庆,李涛,段智利,王元忠. 数据融合快速鉴别9种野生食用牛肝菌[J]. 菌物学报, 2019, 38(4): 494-503. DOI: 10.13346/j.mycosystema.180225
作者姓名:李秀萍  李杰庆  李涛  段智利  王元忠
作者单位:云南农业大学农学与生物技术学院, 云南 昆明 650201;云南省农业科学院农产品加工研究所, 云南 昆明 650221;云南农业大学农学与生物技术学院,云南 昆明,650201;玉溪师范学院化学生物与环境学院,云南 玉溪,653100;云南省农业科学院农产品加工研究所,云南 昆明,650221
基金项目:国家自然科学基金(31660591);国家自然科学基金(21667031);云南省教育厅科学研究基金(2018JS275);云南省高校食用菌资源开发与利用重点实验室建设项目
摘    要:食用菌种类与产地品质存在差异,加上因牟利产生的混杂销售现象,严重制约了高原特色农产品来源鉴别、种质资源评价和深入挖掘利用。本试验融合牛肝菌光谱信息建立支持向量机(SVM)模型,寻找最佳的样品种类鉴别方法。结果显示:(1)元素标准曲线R 2>0.999,RSD<5.0%,标准物回收率94%-106%,测定方法可靠;(2)样品含Ca、Na等人体必需元素,但Cd含量超标;(3)脂肪酸、蛋白质等化合物和Ni、Co等矿质元素对种类鉴别贡献最大;(4)中级数据融合优于低级数据融合,优于单一光谱数据模型。数据融合结合化学计量学可实现样品种类快速准确鉴别,对食用菌市场监督、种质资源评价及挖掘利用具有理论参考意义。

关 键 词:牛肝菌  傅里叶变换红外光谱  紫外可见光谱  电感耦合等离子体原子发射光谱  数据融合  种类鉴别
收稿时间:2018-08-22

Rapid quality identification of nine wild edible Boletus mushrooms by using data fusion
LI Xiu-Ping,LI Jie-Qing,LI Tao,DUAN Zhi-Li,WANG Yuan-Zhong. Rapid quality identification of nine wild edible Boletus mushrooms by using data fusion[J]. Mycosystema, 2019, 38(4): 494-503. DOI: 10.13346/j.mycosystema.180225
Authors:LI Xiu-Ping  LI Jie-Qing  LI Tao  DUAN Zhi-Li  WANG Yuan-Zhong
Affiliation:➊College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan 650201, China➋Institute of Agro-Products Processing Science and Technology, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650221, China➌College of Chemistry, Biology and Environment Science, Yuxi Normal University, Yuxi, Yunnan 653100, China
Abstract:The prediction model of support vector machine (SVM) was established based on spectra and data fusion to find reliable approach for quality identification of marketing edible Boletus in Yunnan Province. The results indicated that element content calibration curve was R 2>0.999 and RSD<5.0%, and the standard recovery rate was 94%-106%. The marketing samples contain necessary elements of human body such as Ca, Na, etc., while Cd content exceeds the provided standard. Fatty acids, proteins, Ni, Co, etc. were the main substances for quality identification. Among all the models, mid-level data fusion was superior to low-level data fusion and single spectral data model. The rapid and accurate quality identification was achieved by means of data fusion combined with chemometrics, providing a theoretical reference for market supervision, germplasm resources evaluation and exploiting utilization potentiality of Boletus mushrooms.
Keywords:Boletus mushroom  FTIR spectroscopy  UV-Visible spectroscopy  inductively coupled plasma-atomic emission spectroscopy  data fusion  species identification  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《菌物学报》浏览原始摘要信息
点击此处可从《菌物学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号