Equilibrium temperature in a clump of bacteria heated in fluid. |
| |
Authors: | K R Davey |
| |
Abstract: | A theoretical model was developed and used to estimate quantitatively the "worst case", i.e., the longest, time to reach equilibrium temperature in the center of a clump of bacteria heated in fluid. For clumps with 10 to 10(6) cells heated in vapor, such as dry and moist air, and liquid fluids such as purees and juices, predictions show that temperature equilibrium will occur with sterilization temperatures up to 130 degrees C in under 0.02 s. Model development highlighted that the controlling influence on time for heating up the clump is the surface convection thermal resistance and that the internal conduction resistance of the clump mass is negligible by comparison. The time for a clump to reach equilibrium sterilization temperature was therefore decreased with relative turbulence (velocity) of the heating fluid, such as occurs in many process operations. These results confirm widely held suppositions that the heat-up time of bacteria in vapor or liquid is not significant with usual sterilization times. |
| |
Keywords: | |
|
|