首页 | 本学科首页   官方微博 | 高级检索  
     


Role of fadR and atoC(Con) mutations in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in recombinant pha+ Escherichia coli.
Authors:H G Rhie and D Dennis
Abstract:Recombinant Escherichia coli fadR atoC(Con) mutants containing the polyhydroxyalkanoate (PHA) biosynthesis genes from Alcaligenes eutrophus are able to incorporate significant levels of 3-hydroxyvalerate (3HV) into the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)]. We have used E. coli fadR (FadR is a negative regulator of fatty acid oxidation) and E. coli atoC(Con) (AtoC is a positive regulator of fatty acid uptake) mutants to demonstrate that either one of these mutations alone can facilitate copolymer synthesis but that 3HV levels in single mutant strains are much lower than in the fadR atoC(Con) strain. E. coli atoC(Con) mutants were used alone and in conjunction with atoA and atoD mutants to determine that the function of the atoC(Con) mutation is to increase the uptake of propionate and that this uptake is mediated, at least in part, by atoD+. Similarly, E. coli fadR mutants were used alone and in conjunction with fadA, fadB, and fadL mutants to show that the effect of the fadR mutation is dependent on fadB+ and fadA+ gene products. Strains that were mutant in the fadB or fadA locus were unable to complement a PHA biosynthesis pathway that was mutant at the phaA locus (thiolase), but a strain containing a fadR mutation and which was fadA+ fadB+ was able to complement the phaA mutation and incorporated 3HV into P(3HB-co-3HV) to a level of 29 mol%.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号