Abstract: | Spontaneous revertants of the immune-selected variant HXB2thr582, which resists neutralization by certain conformationally dependent antibodies specific for the CD4-binding site on gp120 (such as F105), appeared after long-term culture in the absence of immune-selecting serum. Molecular analysis showed some of the viruses in the revertant stock contained a simple back mutation, whereas others retained the Thr-582 codon but contained a substitution of serine for phenylalanine in gp41 at position 673. Neutralization sensitivity to the selecting serum and to F105 of infectious clones containing either the back mutation or the compensatory mutation, HXB2thr582ser673, was confirmed. HXB2thr582-infected cells have a greater propensity for syncytium formation and single cell killing than do either the parental HXB2 or the revertant HXB2thr582ser673. This suggests that the revertant arose by selection in vitro for a less cytopathic virus. Our results link three envelope regions shown to influence virus-cell fusion as well as neutralization by antibody: the CD4-binding region, the leucine zipper domain, and a region hidden to antipeptide antibodies upon envelope oligomerization. Taken together they illustrate the functional importance of the gp120-gp41 interaction and emphasize the impact of the interplay between envelope regions on overall conformation and function and on recognition by neutralizing antibodies. |