Arachidonate cannot be released directly from diacyl-sn-glycero-3-phosphocholine in thrombin-stimulated platelets. |
| |
Authors: | O Colard M Breton D Pepin F Chevy G Bereziat J Polonovski |
| |
Affiliation: | URA 217 CNRS, Biochimie, CHU Saint-Antoine, Paris, France. |
| |
Abstract: | The origin of the arachidonate released from platelets on stimulation with thrombin was investigated by comparing the specific activities of released arachidonate and of arachidonoyl-containing phospholipids using rat platelets prelabelled with arachidonate. Quantification of the released arachidonate was determined in the presence of BW 755 C, a dual cyclo-oxygenase/lipoxygenase inhibitor, which was found not to modify the arachidonate mobilization between the platelet phospholipids. The phospholipid molecular species were analysed by h.p.l.c. of diradylglycerol benzoate derivatives of diacyl, alkylacyl and alkenylacyl classes. The labelled/unlabelled arachidonate ratio varied greatly in the phospholipids depending on whether an ether or acyl bond was present in sn-1 position of the glycerol, on the length and degree of unsaturation of this fatty chain and on the polar head group. Between 15 s and 5 min of stimulation by thrombin, the released arachidonate kept a constant specific activity which was considerably lower than the specific activity of diacyl-GPC. The specific activity of the released arachidonate was intermediate between the specific activities of the 16:0-20:4 and 18:0-20:4 species of diacyl-GPI and diacyl-GPE, and corresponded to the mean specific activity of alkylacyl-GPC. The data indicate that the released arachidonate cannot come directly from diacyl-GPC, and that two phospholipids in particular can act as direct precursors of the released arachidonate. These are (1) the alkylacyl-GPC and (2) the diacyl-GPE whose hydrolysis would induce an arachidonate transfer from diacyl-GPC. |
| |
Keywords: | |
|
|