Suppressing Energy Loss due to Triplet Exciton Formation in Organic Solar Cells: The Role of Chemical Structures and Molecular Packing |
| |
Authors: | Xian‐Kai Chen Tonghui Wang Jean‐Luc Brédas |
| |
Affiliation: | Laboratory for Computational and Theoretical Chemistry of Advanced Materials, KAUST Solar Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia |
| |
Abstract: | In the most efficient solar cells based on blends of a conjugated polymer (electron donor) and a fullerene derivative (electron acceptor),ultrafast formation of charge‐transfer (CT) electronic states at the donor‐acceptor interfaces and efficient separation of these CT states into free charges, lead to internal quantum efficiencies near 100%. However, there occur substantial energy losses due to the non‐radiative recombinations of the charges, mediated by the loweset‐energy (singlet and triplet) CT states; for example, such recombinations can lead to the formation of triplet excited electronic states on the polymer chains, which do not generate free charges. This issue remains a major factor limiting the power conversion efficiencies (PCE) of these devices. The recombination rates are, however, difficult to quantify experimentally. To shed light on these issues, here, an integrated multi‐scale theoretical approach that combines molecular dynamics simulations with quantum chemistry calculations is employed in order to establish the relationships among chemical structures, molecular packing, and non‐radiative recombination losses mediated by the lowest‐energy charge‐transfer states. |
| |
Keywords: | chemical structures energy loss molecular packing organic solar cells triplet exciton formation |
|
|