首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of the immature secretory granule, an intermediate in granule biogenesis
Authors:S A Tooze  T Flatmark  J Tooze  W B Huttner
Affiliation:Cell Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany.
Abstract:The events in the biogenesis of secretory granules after the budding of a dense-cored vesicle from the trans-Golgi network (TGN) were investigated in the neuroendocrine cell line PC12, using sulfate-labeled secretogranin II as a marker. The TGN-derived dense-cored vesicles, which we refer to as immature secretory granules, were found to be obligatory organellar intermediates in the biogenesis of the mature secretory granules which accumulate in the cell. Immature secretory granules were converted to mature secretory granules with a half-time of approximately 45 min. This conversion entailed an increase in their size, implying that the maturation of secretory granules includes a fusion event involving immature secretory granules. Pulse-chase labelling of PC12 cells followed by stimulation with high K+, which causes the release of secretogranin II, showed that not only mature, but also immature secretory granules were capable of undergoing regulated exocytosis. The kinetics of secretion of secretogranin II, as well as those of a constitutively secreted heparan sulfate proteoglycan, were reduced by treatment of PC12 cells with nocodazole, suggesting that both secretory granules and constitutive secretory vesicles are transported to the plasma membrane along microtubules. Our results imply that certain membrane proteins, e.g., those involved in the fusion of post-TGN vesicles with the plasma membrane, are sorted upon exit from the TGN, whereas other membrane proteins, e.g., those involved in the interaction of post-TGN vesicles with the cytoskeleton, may not be sorted.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号