首页 | 本学科首页   官方微博 | 高级检索  
     


Chemokinetic accumulation of human neutrophils on immune complex-coated substrata: analysis at a boundary
Authors:P C Wilkinson  J M Lackie  J V Forrester  G A Dunn
Abstract:The locomotory behavior of human blood neutrophil leukocytes was studied at a boundary between two surfaces with different chemokinetic properties. This was achieved by time-lapse cinematography of neutrophils moving on coverslips coated with BSA, then part-coated with immune complexes by adding anti-BSA IgG with a straight-line boundary between the BSA and the immune complexes. Cell locomotion was filmed in microscopic fields bisected by the boundary, and kinetic behavior was assessed by comparing speed (orthokinesis), turning behavior (klinokinesis), and the rate of diffusion of the cells on each side of the boundary, using a recently described mathematical analysis of kinesis. In the absence of serum or complement, the proportion of motile cells and their speed and rate of diffusion were greater on BSA than on antiBSA, but there was no consistent difference in turning behavior between cells on the two surfaces. The immune complexes were therefore negatively chemokinetic in comparison with BSA, and this resulted from a negative orthokinesis with little or no contribution from klinokinesis. As would be predicted theoretically, this resulted in gradual accumulation of cells on the immune complexes even in the absence of a chemotactic factor. In further studies, a parallel plate flow chamber was used to show that, under conditions of flow, neutrophils accumulated much more rapidly on a surface coated with BSA- anti-BSA than on BSA alone. Moreover, neutrophils on immune complex- coated surfaces lost their ability to form rosettes with IgG-coated erythrocytes. This suggests that neutrophils on immune complex-coated surfaces redistribute their Fc receptors (RFc gamma) to the under surface, and that the lowered speed of locomotion is due to tethering of neutrophils by substratum-bound IgG-Fc.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号