首页 | 本学科首页   官方微博 | 高级检索  
     


Cofilin, actin and their complex observed in vivo using fluorescence resonance energy transfer
Authors:Chhabra D  dos Remedios C G
Affiliation:Muscle Research Unit, School of Medical Sciences, Institute for Biomedical Research, University of Sydney, Sydney, New South Wales, Australia. dchhabra@anatomy.usyd.edu.au
Abstract:Actin is the principal component of microfilaments. Its assembly/disassembly is essential for cell motility, cytokinesis, and a range of other functions. Recent evidence suggests that actin is present in the nucleus where it may be involved in the regulation of gene expression and that cofilin binds actin and can translocate into the nucleus during times of stress. In this report, we combine fluorescence resonance energy transfer and confocal microscopy to analyze the interactions of cofilin and G-actin within the nucleus and cytoplasm. By measuring the rate of photobleaching of fluorescein-labeled actin in the presence and absence of Cy5-labeled cofilin, we determined that almost all G-actin in the nucleus is bound to cofilin, whereas approximately (1/2) is bound in the cytoplasm. Using fluorescence resonance energy transfer imaging techniques we observed that a significant proportion of fluorescein-labeled cofilin in both the nucleus and cytoplasm binds added tetramethylrhodamine-labeled G-actin. Our data suggest there is significantly more cofilin-G-actin complex and less free cofilin in the nucleus than in the cytoplasm.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号