Differential modulation of cardiac Ca2+ channel gating by beta-subunits |
| |
Authors: | Dzhura Igor Neely Alan |
| |
Affiliation: | Department of Physiology, Texas Tech University, Lubbock, Texas, USA. |
| |
Abstract: | To investigate the mechanisms that increase ionic currents when Ca(2+) channels' alpha(1) subunits are co-expressed with the beta-subunits, we compared channel activity of Ca(V)1.2 (alpha(1C)) co-expressed with beta(1a) and beta(2a) in Xenopus oocytes. Normalized by charge movement, ionic currents were near threefold larger with beta(2a) than with beta(1a). At the single-channel level, the open probability (P(o)) was over threefold larger with beta(2a), and traces with high P(o) were more frequent. Among traces with P(o) > 0.1, the mean duration of burst of openings (MBD) were nearly twice as long for alpha(1C)beta(2a) (15.1 +/- 0.7 ms) than for alpha(1C)beta(1a) (8.4 +/- 0.5 ms). Contribution of endogenous beta(3xo) was ruled out by comparing MBDs with alpha(1C)-cRNA alone (4.7 +/- 0.1 ms) with beta(3xo) (14.3 +/- 1.1 ms), and with beta(1b) (8.2 +/- 0.5 ms). Open-channel current amplitude distributions were indistinguishable for alpha(1C)beta(1a) and alpha(1C)beta(2a), indicating that opening and closing kinetics are similar with both subunits. Simulations with constant opening and closing rates reproduced the microscopic kinetics accurately, and therefore we conclude that the conformational change-limiting MBD is differentially regulated by the beta-subunits and contributes to the larger ionic currents associated with beta(2a), whereas closing and opening rates do not change, which should reflect the activity of a separate gate. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|