Abstract: | A major determinant of neurovirulence for the GDVII strain of Theiler's virus, a murine picornavirus, was mapped to the P1 capsid protein region. Chimeric viruses were constructed by using sequences from the 5' noncoding and P1 regions of the virulent GDVII strain to replace equivalent regions of the less virulent BeAn strain. Neurovirulence in mice progressively increased as larger regions of BeAn capsid protein-encoding sequences were replaced. The in vitro growth characteristics of the chimeras showed that some chimeras were growth delayed in BHK-21 cells even though the viral constructs exhibited larger plaque sizes, were less temperature sensitive, and were more thermally stable than BeAn. Examination of assembly intermediates revealed an altered pentamer conformation and delayed empty capsid formation for the growth-compromised viruses. For these constructs, their chimeric nature inadvertently resulted in virion assembly defects that complicated finer-scale mapping of the determinants of virulence within the capsid region. These results demonstrate the importance of determining in vitro growth characteristics of chimeras to correctly decipher the significance of their phenotypes. VP1 does not contain a complete determinate for virulence because a chimera with VP1-encoding sequences from GDVII in an otherwise BeAn virus has an attenuated phenotype but is not growth compromised in vitro. The source of sequences, BeAn or GDVII, in the 5' noncoding region had only slight effects on the virulence of recombinant constructs. |