首页 | 本学科首页   官方微博 | 高级检索  
     


Increased Expression of a myo-Inositol Methyl Transferase in Mesembryanthemum crystallinum Is Part of a Stress Response Distinct from Crassulacean Acid Metabolism Induction
Authors:Vernon D M  Bohnert H J
Affiliation:Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721.
Abstract:The facultative halophyte Mesembryanthemum crystallinum responds to osmotic stress by switching from C3 photosynthesis to Crassulacean acid metabolism (CAM). This shift to CAM involves the stress-initiated up-regulation of mRNAs encoding CAM enzymes. The capability of the plants to induce a key CAM enzyme, phosphoenolpyruvate carboxylase, is influenced by plant age, and it has been suggested that adaptation to salinity in M. crystallinum may be modulated by a developmental program that controls molecular responses to stress. We have compared the effects of plant age on the expression of two salinity-induced genes: Gpdl, which encodes the photosynthesis-related enzyme glyceraldehyde 3-phosphate dehydrogenase, and Imtl, which encodes a methyl transferase involved in the biosynthesis of a putative osmoprotectant, pinitol. Imtl mRNA accumulation and the accompanying increase in pinitol in stressed Mesembryanthemum exhibit a pattern of induction distinct from that observed for CAM-related genes. We conclude that the molecular mechanisms that trigger Imtl and pinitol accumulation in response to salt stress in M. crystallinum differ in some respects from those that lead to CAM induction. There may be multiple signals or pathways that regulate inducible components of salinity tolerance in this facultative halophyte.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号