Longitudinal Impedance of Skinned Frog Muscle Fibers |
| |
Authors: | Bert A. Mobley J. Leung R. S. Eisenberg |
| |
Affiliation: | From the Department of Physiology, University of California at Los Angeles, Los Angeles, California 90024 |
| |
Abstract: | Longitudinal impedance of skinned muscle fibers was measured with extracellular electrodes and an oil gap method in which a central longitudinal section of fiber is insulated by oil while the ends of the fiber are bathed in conducting pools of relaxing solution. Intact single fibers were isolated from frog semitendinosus muscle and the sarcolemma removed either by mechanical or chemical methods. Stray capacitance across the oil gap was measured after each experiment and its admittance subtracted from the admittance of the fiber and oil gap. Effects of impedance at the ends of the fiber were eliminated by measuring the impedance with two lengths of fiber in the oil gap and subtracting the impedance at the shorter length from that at the longer length. Longitudinal impedance so determined for mechanically and chemically skinned fibers exhibited zero phase shift from 1 to 10,000 Hz, i.e., the longitudinal impedance of skinned fibers is purely resistive. If we assume that our skinned fibers are a model of the sarcoplasm of muscle, we conclude that the equivalent circuit of the sarcoplasm is a resistor. |
| |
Keywords: | |
|
|