首页 | 本学科首页   官方微博 | 高级检索  
     


Organization of model helical peptides in lipid bilayers: insight into the behavior of single-span protein transmembrane domains
Authors:Sharpe Simon  Barber Kathryn R  Grant Chris W M  Goodyear David  Morrow Michael R
Affiliation:Department of Biochemistry, University of Western Ontario, London N6A 5C1, Canada.
Abstract:Selectively deuterated transmembrane peptides comprising alternating leucine-alanine subunits were examined in fluid bilayer membranes by solid-state nuclear magnetic resonance (NMR) spectroscopy in an effort to gain insight into the behavior of membrane proteins. Two groups of peptides were studied: 21-mers having a 17-amino-acid hydrophobic domain calculated to be close in length to the hydrophobic thickness of 1-palmitoyl-2-oleoyl phosphatidylcholine and 26-mers having a 22-amino-acid hydrophobic domain calculated to exceed the membrane hydrophobic thickness. (2)H NMR spectral features similar to ones observed for transmembrane peptides from single-span receptors of higher animal cells were identified which apparently correspond to effectively monomeric peptide. Spectral observations suggested significant distortion of the transmembrane alpha-helix, and/or potential for restriction of rotation about the tilted helix long axis for even simple peptides. Quadrupole splittings arising from the 26-mer were consistent with greater peptide "tilt" than were those of the analogous 21-mer. Quadrupole splittings associated with monomeric peptide were relatively insensitive to concentration and temperature over the range studied, indicating stable average conformations, and a well-ordered rotation axis. At high peptide concentration (6 mol% relative to phospholipid) it appeared that the peptide predicted to be longer than the membrane thickness had a particular tendency toward reversible peptide-peptide interactions occurring on a timescale comparable with or faster than approximately 10(-5) s. This interaction may be direct or lipid-mediated and was manifest as line broadening. Peptide rotational diffusion rates within the membrane, calculated from quadrupolar relaxation times, T(2e), were consistent with such interactions. In the case of the peptide predicted to be equal to the membrane thickness, at low peptide concentration spectral lineshape indicated the additional presence of a population of peptide having rotational motion that was restricted on a timescale of 10(-5) s.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号