Abstract: | A membrane-associated form of phosphate-dependent glutaminase was derived from sonicated mitochondria and purified essentially free of gamma-glutamyl transpeptidase activity. Increasing concentrations of phosphate cause a sigmoidal activation of the membrane-bound glutaminase. Phosphate also causes a similar effect on the rate of glutaminase inactivation by the two affinity labels, L-2-amino-4-oxo-5-chloropentanoic acid and 6-diazo-5-oxo-L-norleucine, as observed previously for the solubilized and purified enzyme. Therefore the two forms of glutaminase undergo similar phosphate-induced changes in conformation. A sensitive radioactive assay was developed and used to determine the kinetics of glutamate inhibition of the membrane-associated glutaminase. The Km for glutamine decreases from 36 to 4 mM when the phosphate concentration is increased from 5 to 100 mM. Glutamate is a competitive inhibitor with respect to glutamine at both high and low concentrations of phosphate. However, the Ki for glutamate is increased from 5 to 52 mM with increasing phosphate concentration. Therefore glutamine and glutamate interact with the same site on the glutaminase, but the specificity of the site is determined by the available phosphate concentration. |