Role of Hck in the pathogenesis of encephalomyocarditis virus-induced diabetes in mice |
| |
Authors: | Choi K S Jun H S Kim H N Park H J Eom Y W Noh H L Kwon H Kim H M Yoon J W |
| |
Affiliation: | Laboratory of Endocrinology, Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea. |
| |
Abstract: | Soluble mediators such as interleukin-1beta, tumor necrosis factor alpha (TNF-alpha), and inducible nitric oxide synthase (iNOS) produced from activated macrophages play an important role in the destruction of pancreatic beta cells in mice infected with a low dose of the D variant of encephalomyocarditis (EMC-D) virus. The tyrosine kinase signaling pathway was shown to be involved in EMC-D virus-induced activation of macrophages. This investigation was initiated to determine whether the Src family of kinases plays a role in the activation of macrophages, subsequently resulting in the destruction of beta cells, in mice infected with a low dose of EMC-D virus. We examined the activation of p59/p56(Hck), p55(Fgr), and p56/p53(Lyn) in macrophages from DBA/2 mice infected with the virus. We found that p59/p56(Hck) showed a marked increase in both autophosphorylation and kinase activity at 48 h after infection, whereas p55(Fgr) and p56/p53(Lyn) did not. The p59/p56(Hck) activity was closely correlated with the tyrosine phosphorylation level of Vav. Treatment of EMC-D virus-infected mice with the Src kinase inhibitor, PP2, resulted in the inhibition of p59/p56(Hck) activity and almost complete inhibition of the production of TNF-alpha and iNOS in macrophages and the subsequent prevention of diabetes in mice. On the basis of these observations, we conclude that the Src kinase, p59/p56(Hck), plays an important role in the activation of macrophages and the subsequent production of TNF-alpha and nitric oxide, leading to the destruction of pancreatic beta cells, which results in the development of diabetes in mice infected with a low dose of EMC-D virus. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|