首页 | 本学科首页   官方微博 | 高级检索  
     


Study of neuroprotective function of Ginkgo biloba extract (EGb761) derived‐flavonoid monomers using a three‐dimensional stem cell‐derived neural model
Authors:Julian George  Hua Ye  Zhanfeng Cui  Zhaohui Li  Qingxi Liu  Yaozhou Zhang  Dan Ge  Yang Liu
Affiliation:1. Inst. of Biomedical Engineering, University of Oxford, Oxford, U.K;2. Tianjin Weikai Bioeng Ltd., Tianjin, China;3. Tianjin International Joint Academy of Biomedicine, Tianjin, China;4. Dept. of Chemical Engineering, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China;5. Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
Abstract:An in vitro three‐dimensional (3D) cell culture system that can mimic organ and tissue structure and function in vivo will be of great benefit for drug discovery and toxicity testing. In this study, the neuroprotective properties of the three most prevalent flavonoid monomers extracted from EGb 761 (isorharmnetin, kaempferol, and quercetin) were investigated using the developed 3D stem cell‐derived neural co‐culture model. Rat neural stem cells were differentiated into co‐culture of both neurons and astrocytes at an equal ratio in the developed 3D model and standard two‐dimensional (2D) model using a two‐step differentiation protocol for 14 days. The level of neuroprotective effect offered by each flavonoid was found to be aligned with its effect as an antioxidant and its ability to inhibit Caspase‐3 activity in a dose‐dependent manner. Cell exposure to quercetin (100 µM) following oxidative insult provided the highest levels of neuroprotection in both 2D and 3D models, comparable with exposure to 100 µM of Vitamin E, whilst exposure to isorhamnetin and kaempferol provided a reduced level of neuroprotection in both 2D and 3D models. At lower dosages (10 µM flavonoid concentration), the 3D model was more representative of results previously reported in vivo. The co‐cultures of stem cell derived neurons and astrocytes in 3D hydrogel scaffolds as an in vitro neural model closely replicates in vivo results for routine neural drug toxicity and efficacy testing. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:735–744, 2016
Keywords:in vitro 3D model  neural stem cell differentiation  neuroprotection  oxidative stress  flavonoids of EGb 761
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号