Abstract: | Transpositional mutagenesis of Thiobacillus novellus by Tn501 was achieved by means of the incompatibility of IncP plasmids. Tn501 insertion caused three types of mutant phenotypes: isoleucine auxotrophy, lysine auxotrophy, and a reduced ability to oxidize reduced sulfur compounds and to fix CO2. Oxidation rates for elemental sulfur (S0), thiosulfate (S2O32−), and tetrathionate (S4O62−) in mutants of the latter type were reduced relative to those of the nonmutant control strain. Incorporation of labeled bicarbonate (H14CO3−) was also significantly impaired. Although suicide vehicles were not useful for the introduction of transposons into T. novellus, this method was effective for the Tn1721-induced mutagenesis of Thiobacillus versutus. Tn1721 insertions resulted in the loss of the natural resistance of T. versutus to arsenate and gentamicin and in auxotrophies for isoleucine-valine, arginine, phenylalanine, valine, and panthothenate. Transpositional mutagenesis by either method should prove to be a useful tool for further study of these and other members of the genus Thiobacillus. |