Increased transport of pteridines compensates for mutations in the high affinity folate transporter and contributes to methotrexate resistance in the protozoan parasite Leishmania tarentolae |
| |
Authors: | Kündig C Haimeur A Légaré D Papadopoulou B Ouellette M |
| |
Affiliation: | Centre de Recherche en Infectiologie, CHUQ, Pavilon CHUL, 2705 Boulevard Laurier, RC-709, Ste-Foy, Quebec, Canada G1V 4G2. |
| |
Abstract: | Functional cloning led to the isolation of a novel methotrexate (MTX) resistance gene in the protozoan parasite Leishmania. The gene corresponds to orfG, an open reading frame (ORF) of the LD1/CD1 genomic locus that is frequently amplified in several Leishmania stocks. A functional ORF G-green fluorescence protein fusion was localized to the plasma membrane. Transport studies indicated that ORF G is a high affinity biopterin transporter. ORF G also transports folic acid, with a lower affinity, but does not transport the drug analog MTX. Disruption of both alleles of orfG led to a mutant strain that became hypersensitive to MTX and had no measurable biopterin transport. Leishmania tarentolae MTX-resistant cells without their high affinity folate transporters have a rearranged orfG gene and increased orfG RNA levels. Overexpression of orfG leads to increased biopterin uptake and, in folate-rich medium, to increased folate uptake. MTX-resistant cells compensate for mutations in their high affinity folate/MTX transporter by overexpressing ORF G, which increases the uptake of pterins and selectively increases the uptake of folic acid, but not MTX. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|