Interspin distances in spin-labeled metmyoglobin variants determined by saturation recovery EPR |
| |
Authors: | Zhou Y Bowler B E Lynch K Eaton S S Eaton G R |
| |
Affiliation: | Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208-2436, USA. |
| |
Abstract: | Saturation recovery (SR) electron paramagnetic resonance was used to determine the distance between iron and nitroxyl for spin-labeled metmyoglobin variants in low-spin and high-spin states of the Fe(III). The interspin distances were measured by analyzing the effect of the heme iron on the spin-lattice relaxation rates of the nitroxyl spin label using the modified Bloembergen equation for low-spin species, and an analogue of the Bloembergen equation for high-spin species. Insight simulations of the spin-labeled protein structures also were used to determine the interspin distances. The distances obtained by SR for high-spin and low-spin complexes with 15-20 A interspin distances, for low-spin CN(-) and high-spin formate adducts at distances up to about 30 A, and results from Insight calculations were in good agreement. For variants with 25-30 A interspin distances, the distances obtained by SR for the fluoride adducts were shorter than observed for the CN(-) or formate adducts or predicted by Insight simulations. Of the heme axial ligands examined (CN(-), imidazole, F(-), and formate), CN(-) is the best choice for determination of iron-nitroxyl distances in the range of 15-30 A. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|