Abstract: | We investigated survival of Klebsiella pneumoniae in freshwater, by determining bacterial densities at eight temperatures between 0 and 20 degrees C at various distances from the discharge area in a lake receiving bacteria mainly from a paper mill. An mFC-inositol-carbenicillin-agar medium was used for Klebsiella enumeration by the membrane filter method. About 90% of the bacteria forming typical colonies on this medium were identified as Klebsiella species. About 10% of the bacteria were false positive, and, an equal percentage were false negative. Semilogarithmic plots of bacterial densities as a function of distance were found to be linear, with slopes depending on water temperature. The average velocity of the flow was estimated from the travel-of-bacterial-density minima caused by production stops. Regression equations were calculated for the dependence of death rate on temperature alone and on both temperature and discharge. The temperature coefficient (Q10) of the death rate was estimated to be 2.1 +/- 0.4. The decimal reduction time (T90) of K. pneumoniae at 0 degrees C was calculated to be about 24 days, and that at 20 degrees C was slightly over 5 days. The regression model was verified by independent observations. Factors affecting the reliability of the estimates were evaluated. |