首页 | 本学科首页   官方微博 | 高级检索  
     


A Glutathione S-Transferase with Activity towards cis-1,2-Dichloroepoxyethane Is Involved in Isoprene Utilization by Rhodococcus sp. Strain AD45
Authors:Johan E. T. van Hylckama Vlieg   Jaap Kingma   Arjan J. van den Wijngaard     Dick B. Janssen
Abstract:Rhodococcus sp. strain AD45 was isolated from an enrichment culture on isoprene (2-methyl-1,3-butadiene). Isoprene-grown cells of strain AD45 oxidized isoprene to 3,4-epoxy-3-methyl-1-butene, cis-1,2-dichloroethene to cis-1,2-dichloroepoxyethane, and trans-1,2-dichloroethene to trans-1,2-dichloroepoxyethane. Isoprene-grown cells also degraded cis-1,2-dichloroepoxyethane and trans-1,2-dichloroepoxyethane. All organic chlorine was liberated as chloride during degradation of cis-1,2-dichloroepoxyethane. A glutathione (GSH)-dependent activity towards 3,4-epoxy-3-methyl-1-butene, epoxypropane, cis-1,2-dichloroepoxyethane, and trans-1,2-dichloroepoxyethane was detected in cell extracts of cultures grown on isoprene and 3,4-epoxy-3-methyl-1-butene. The epoxide-degrading activity of strain AD45 was irreversibly lost upon incubation of cells with 1,2-epoxyhexane. A conjugate of GSH and 1,2-epoxyhexane was detected in cell extracts of cells exposed to 1,2-epoxyhexane, indicating that GSH is the physiological cofactor of the epoxide-transforming activity. The results indicate that a GSH S-transferase is involved in the metabolism of isoprene and that the enzyme can detoxify reactive epoxides produced by monooxygenation of chlorinated ethenes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号